题目内容
【题目】如图,PA与⊙O相切于点A,AB是⊙O的直径,在⊙O上存在一点C满足PA=PC,连结PB、AC相交于点F,且∠APB=3∠BPC,则
=_____.
![]()
【答案】
.
【解析】
连接OP,OC,证明△OAP≌△OCP,可得PC与⊙O相切于点C,证明BC=CP,设OM=x,则BC=CP=AP=2x,PM=y,证得△AMP∽△OAP,可得:
,证明△PMF∽△BCF,由
可得出答案.
解:连接OP,OC.
![]()
∵PA与⊙O相切于点A,PA=PC,
∴∠OAP=90°,
∵OA=OC,OP=OP,
∴△OAP≌△OCP(SSS),
∴∠OAP=∠OCP=90°,
∴PC与⊙O相切于点C,
∵∠APB=3∠BPC,∠APO=∠CPO,
∴∠CPB=∠OPB,
∵AB是⊙O的直径,
∴∠BCA=90°,
∵OP⊥AC,
∴OP∥BC,
∴∠CBP=∠CPB,
∴BC=CP=AP.
∵OA=OB,
∴OM=
.
设OM=x,则BC=CP=AP=2x,PM=y,
∵∠OAP=∠AMP=90°,∠MPA=∠APO,
∴△AMP∽△OAP,
∴
.
∴AP2=PMOP,
∴(2x)2=y(y+x),
解得:
,
(舍去).
∵PM∥BC,
∴△PMF∽△BCF,
∴
=
.
故答案为:
.
练习册系列答案
相关题目