题目内容
(8分)如图,CD是△ABC的中线,点E是AF的中点,CF∥AB.
(1)求证:CF=AD;
(2)若∠ACB=90°,试判断四边形BFCD的形状,并说明理由.
明明与亮亮在借助两堵残墙玩捉迷藏游戏,若明明站在如图所示位置时,亮亮在哪个范围内活动是安全的?请在图(1)的俯视图(2)中画出亮亮的活动范围;
(本题满分14分)
【问题提出】
如图①,已知⊿ABC是等边三角形,点E在线段AB上,点D在直线BC上,且DE=EC,将⊿BCE绕点C顺时针旋转至⊿ACF,连接EF.
试证明:AB=DB+AF.
【类比探究】
(1)如图②,如果点E在线段AB的延长线上,其它条件不变,线段AB、DB、AF之间又有怎样的数量关系?请说明理由.
(2)如果点E在线段BA的延长线上,其他条件不变,请在图③的基础上将图形补充完整,并写出AB,DB,AF之间数量关系,不必说明理由.
如图,正方形ABCD的边长为2,其面积标记为,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外做正方形,其面积标记为,…,按照此规律继续下去,则的值为( )
A. B. C. D.
的相反数是( )
(2分)等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是 .
(2分)1989年以来,省委省政府、西宁市委市政府相继启动实施南北山绿化工程,经过26年的绿化建设,绿化面积、森林覆盖率得到明显提高,城市生态环境得到明显改善,截止2015年两山形成森林209300亩,将209300用科学记数法表示为 .
(12分)如图,小岛A在港口B的北偏东50°方向,小岛C在港口B的北偏西25°方向,一艘轮船以每小时20海里的速度从港口B出发向小岛A航行,经过5小时到达小岛A,这时测得小岛C在小岛A的北偏西70°方向,求小岛A距离小岛C有多少海里?(最后结果精确到1海里,参考数据:≈1.414,≈1.732)
(2分)如图,ABCD中,E为AD的中点,BE,CD的延长线相交于点F,若△DEF的面积为1,则ABCD的面积等于 .