题目内容
分解因式:ax2-9a= .
对某一个函数给出如下定义:如果存在实数,对于任意的函数值,都满足,那么称这个函数是有上界函数,在所有满足条件的中,其最小值称为这个函数的上确界.例如下图中的函数是有上界函数,其上确界是2.
(1)分别判断函数()和()是不是有上界函数?如果是有上界函数,求其上确界;
(2)如果函数()的上确界是,且这个函数的最小值不超过,求的取值范围;
(3)若函数()是以3为上确界的有上界函数,求值.
某校篮球队13名同学的身高如下表:
身高(cm)
175
180
182
185
188
人数(个)
1
5
4
2
则该校篮球队13名同学身高中位数是 .
某校运动会需购买A,B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.
(1)求A、B两种奖品的单价各是多少元?
(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.
如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=2,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值为 .
如图,直线MN与⊙O相切于点M,ME=EF且EF∥MN,则∠E的大小等于( )
A.75° B.60° C.45° D.30°
如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=16cm,BC=22cm,点P从点A出发,以1cm/s的速度向点D运动,点Q从点C同时出发,以3cm/s的速度向点B运动,其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t秒.
(1)当t为多少时,四边形ABQP成为矩形?
(2)四边形PBQD是否能成为菱形?若能,求出t的值;若不能,请说明理由,并探究如何改变Q点的速度(匀速运动),使四边形PBQD在某一时刻为菱形,求点Q的速度.
计算:的结果是 .
如图,已知平行四边形ABCD四个顶点在格点上,每个方格单位为1.
(1)平行四边形ABCD的面积为 ;
(2)在网格上请画出一个正方形,使正方形的面积等于平行四边形ABCD的面积.(尺规作图,保留作图痕迹)并把主要画图步骤写出来.