题目内容
某校篮球队13名同学的身高如下表:
身高(cm)
175
180
182
185
188
人数(个)
1
5
4
2
则该校篮球队13名同学身高中位数是 .
不等式组的整数解的个数是( )
A.3 B.5 C.7 D.无数个
如图,在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,要使四边形EFGH是菱形,则四边形ABCD需满足的一个条件是 .
如图,正方形OABC的顶点O在坐标原点,且OA边和AB边所在直线的解析式分别为:和.
(1)求正方形OABC的边长;
(2)现有动点P、Q分别从C、A同时出发,点P沿线段CB向终点B运动,速度为每秒1个单位,点Q沿折线A→O→C向终点C运动,速度为每秒k个单位,设运动时间为2秒.当k为何值时,将△CPQ沿它的一边翻折,使得翻折前后的两个三角形组成的四边形为菱形?
(3)若正方形以每秒个单位的速度沿射线AO下滑,直至顶点C落在x轴上时停止下滑.设正方形在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围.
计算:
(1)
(2)
如图在平行四边形ABCD中,点E在AD上,且AE:ED=3:1,CE的延长线与BA的延长线交于点F,则S△AFE:S四边形ABCE为( )
A.3:4 B.4:3 C.7:9 D.9:7
-2的倒数是( )
A. -2 B.2 C. D.
分解因式:ax2-9a= .
如图,为了测量某风景区内一座塔AB的高度,小明分别在塔的对面一楼房CD的楼底C,楼顶D处,测得塔顶A的仰角为45°和30°,已知楼高CD为10m,求塔的高度(结果精确到0.1m).(参考数据:≈1.41,≈1.73)