题目内容

如图,已知直线与⊙O相离,OA⊥于点A,交⊙O于点P,点B是⊙O上一点,连接BP并延长,交直线于点C,使得AB=AC.

(1)求证:AB是⊙O的切线;

(2)若PC=2,OA=4,求⊙O的半径.

(1)详见解析;(2)1. 【解析】试题分析:(1)连结OB,如图,由等腰三角形的性质得∠1=∠2,∠4=∠5,由OA⊥AC得∠2+∠3=90°,加上∠3=∠4,易得∠5+∠1=90°,即∠OBA=90°,于是根据切线的判定定理可得AB是⊙O的切线; (2)作OH⊥PB于H,如图,根据垂径定理得到BH=PH,设⊙O的半径为r,则PA=OA-OP=4-r,根据勾股定理得到AC,AB,然后...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网