题目内容

13.如图,△ABC中,AB=AC,D点在BC上,∠BAD=30°,且∠ADC=60°.请完整说明为何AD=BD与CD=2BD的理由.

分析 求出∠B、∠C、∠DAC的度数,根据等腰三角形的判定方法以及30度直角三角形的性质即可解决问题.

解答 解:∵∠4=60°,∠1=30°,
根据三角形外角定理可得:∠ABD=∠4-∠1=60°-30°=30°=∠1.
∴BD=AD.
∵∠ABD=30°,
又∵AB=AC,
∴∠C=∠ABD=30°,
∴∠2=180°-∠4-∠C=180°-60°-30°=90°,
∵∠C=30°,
∴CD=2AD=2BD.

点评 本题考查等腰三角形的判定和性质、直角三角形30度角性质等知识,解题的关键是灵活应用这些知识解决问题,属于基础题,中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网