题目内容
8.分析 连接BF,根据菱形的对角线平分一组对角求出∠BAC,∠BCF=∠DCF,四条边都相等可得BC=DC,再根据菱形的邻角互补求出∠ABC,然后根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF,根据等边对等角求出∠ABF=∠BAC,从而求出∠CBF,再利用“边角边”证明△BCF和△DCF全等,根据全等三角形对应角相等可得∠CDF=∠CBF.
解答
解:如图,连接BF,
在菱形ABCD中,∵∠B=100°,
∴∠BAC=$\frac{1}{2}$∠BAD=$\frac{1}{2}$×80°=40°,∠BCF=∠DCF,BC=DC,
∵EF是线段AB的垂直平分线,
∴AF=BF,∠ABF=∠BAC=40°,
∴∠CBF=∠ABC-∠ABF=100°-40°=60°,
∵在△BCF和△DCF中,
$\left\{\begin{array}{l}{BC=DC}\\{∠BCF=∠DCF}\\{CF=CF}\end{array}\right.$,
∴△BCF≌△DCF(SAS),
∴∠CDF=∠CBF=60°,
故答案为:60.
点评 本题考查了菱形的性质,全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,综合性强,但难度不大,熟记各性质是解题的关键.
练习册系列答案
相关题目
20.高度每增加1千米,气温就下降2℃,现在地面气温是-10℃,那么离地面高度为7千米的高空的气温是( )
| A. | -4℃ | B. | -14℃ | C. | -24℃ | D. | 14℃ |