ÌâÄ¿ÄÚÈÝ
18£®£¨1£©¼ÆË㣺$\sqrt{\frac{2}{3}}$-£¨$\frac{1}{6}$$\sqrt{24}$+$\frac{3}{2}$$\sqrt{12}$£©-£¨$\sqrt{2}$-$\sqrt{6}$£©2£»£¨2£©½â²»µÈʽ×é$\left\{\begin{array}{l}{3£¨x-1£©£¼5x+1}\\{\frac{x-1}{2}¡Ý2x-4}\end{array}\right.$£¬²¢Ö¸³öËüµÄËùÓеķǸºÕûÊý½â£®
·ÖÎö £¨1£©ÏȽøÐжþ´Î¸ùʽµÄ»¯¼ò£¬È»ºóºÏ²¢£»
£¨2£©·Ö±ðÇó³öÁ½¸ö²»µÈʽµÄ½â£¬È»ºóÇó³öËùÓеķǸºÕûÊý½â£®
½â´ð ½â£º£¨1£©Ôʽ=$\frac{\sqrt{6}}{3}$-$\frac{\sqrt{6}}{3}$-3$\sqrt{3}$-8+4$\sqrt{3}$
=$\sqrt{3}$-8£»
£¨2£©½â²»µÈʽ3£¨x-1£©£¼5x-1µÃ£ºx£¾-1£¬
½â²»µÈʽ$\frac{x-1}{2}$£¾2x-4µÃ£ºx£¼$\frac{7}{3}$£¬
Ôò·Ç¸ºÕûÊý½âΪ£º0£¬1£¬2£®
µãÆÀ ±¾Ì⿼²éÁ˶þ´Î¸ùʽµÄ»ìºÏÔËËãºÍ½âÒ»ÔªÒ»´Î²»µÈʽ£¬½â´ð±¾ÌâµÄ¹Ø¼üÊÇÕÆÎÕ¶þ´Î¸ùʽµÄ³Ë·¨·¨ÔòºÍ³ý·¨·¨ÔòÒÔ¼°²»µÈʽµÄ½â·¨£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
13£®ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | 6µÄƽ·½¸ùÊÇ¡À3 | B£® | -3ÊÇ£¨-3£©2µÄËãÊõƽ·½¸ù | ||
| C£® | $\sqrt{6}$ÊÇ$\sqrt{36}$µÄËãÊõƽ·½¸ù | D£® | 8µÄÁ¢·½¸ùÊÇ¡À2 |
3£®Èô$\frac{a}{2}$=$\frac{b}{3}$=$\frac{c}{7}$£¬ÇÒa-b+c=12£¬Ôò2a-3b+cµÈÓÚ£¨¡¡¡¡£©
| A£® | $\frac{3}{7}$ | B£® | 2 | C£® | 4 | D£® | 12 |
10£®ÏÂÁеÈʽ³ÉÁ¢µÄÊÇ£¨¡¡¡¡£©
| A£® | $\sqrt{{a}^{2}+{b}^{2}}$=a+b | B£® | $\sqrt{ab}$=$\sqrt{a}$•$\sqrt{b}$ | C£® | $\sqrt{\frac{a}{b}}$=$\frac{\sqrt{a}}{\sqrt{b}}$ | D£® | $\sqrt{-{a}^{2}{b}^{2}}$=0 |
7£®·Öʽ$\frac{x+1}{x-2}$ÎÞÒâÒ壬ÔòxµÄȡֵÊÇ£¨¡¡¡¡£©
| A£® | x¡Ù2 | B£® | x¡Ù-1 | C£® | x=2 | D£® | x=-1 |