ÌâÄ¿ÄÚÈÝ
ÔÚѧϰ·Öʽ¼ÆËãʱÓÐÕâÑùÒ»µÀÌ⣺ÏÈ»¯¼ò(1+
)¡Â
£¬ÔÙѡȡһ¸öÄãϲ»¶ÇÒºÏÊʵÄÊý´úÈëÇóÖµ£®ÕÅÃ÷ͬѧ»¯¼ò¹ý³ÌÈçÏ£º
½â£º(1+
)¡Â
=
¡Â
£¨ £©
=
•
£¨ £©
=
£¨ £©
£¨1£©ÔÚÀ¨ºÅÖÐÖ±½ÓÌîÈëÿһ²½µÄÖ÷ÒªÒÀ¾Ý»ò֪ʶµã£»
£¨2£©Èç¹ûÄãÊÇÕÅÃ÷ͬѧ£¬ÄÇôÔÚѡȡÄãϲ»¶ÇÒºÏÊʵÄÊý½øÐÐÇóֵʱ£¬Äã²»ÄÜѡȡµÄÊýÓÐ £®
| 1 |
| x-2 |
| x2-2x+1 |
| x2-4 |
½â£º(1+
| 1 |
| x-2 |
| x2-2x+1 |
| x2-4 |
=
| x-2+1 |
| x-2 |
| (x-1)2 |
| (x+2)(x-2) |
=
| x-1 |
| x-2 |
| (x+2)(x-2) |
| (x-1)2 |
=
| x+2 |
| x-1 |
£¨1£©ÔÚÀ¨ºÅÖÐÖ±½ÓÌîÈëÿһ²½µÄÖ÷ÒªÒÀ¾Ý»ò֪ʶµã£»
£¨2£©Èç¹ûÄãÊÇÕÅÃ÷ͬѧ£¬ÄÇôÔÚѡȡÄãϲ»¶ÇÒºÏÊʵÄÊý½øÐÐÇóֵʱ£¬Äã²»ÄÜѡȡµÄÊýÓÐ
¿¼µã£º·ÖʽµÄ»¯¼òÇóÖµ
רÌ⣺ÔĶÁÐÍ
·ÖÎö£º£¨1£©¸ù¾Ýͨ·Ö¡¢Ô¼·Ö¡¢·ÖʽµÄ³ý·¨·¨Ôò½â´ð£»
£¨2£©¸ù¾Ý·ÖʽÓÐÒâÒåµÄÌõ¼þ½øÐнâ´ð¼´¿É£®
£¨2£©¸ù¾Ý·ÖʽÓÐÒâÒåµÄÌõ¼þ½øÐнâ´ð¼´¿É£®
½â´ð£º½â£º£¨1£©Ôʽ¨T
¡Â
£¨ ͨ·Ö¡¢Òòʽ·Ö½â£©
=
•
£¨·ÖʽµÄ³ý·¨·¨Ôò£©
=
£¨Ô¼·Ö£©
¹Ê´ð°¸Îª£ºÍ¨·Ö£¬·Ö½âÒòʽ£»·ÖʽµÄ³ý·¨·¨Ôò£»Ô¼·Ö£»
£¨2£©¡ßx-4¡Ù0£¬x-1¡Ù0£¬
¡àx¡Ù¡À2£¬1£®
¹Ê´ð°¸Îª£º2£¬-2£¬1£®
| x-2+1 |
| x-2 |
| (x-1)2 |
| (x+2)(x-2) |
=
| x-1 |
| x-2 |
| (x+2)(x-2) |
| (x-1)2 |
=
| x+2 |
| x-1 |
¹Ê´ð°¸Îª£ºÍ¨·Ö£¬·Ö½âÒòʽ£»·ÖʽµÄ³ý·¨·¨Ôò£»Ô¼·Ö£»
£¨2£©¡ßx-4¡Ù0£¬x-1¡Ù0£¬
¡àx¡Ù¡À2£¬1£®
¹Ê´ð°¸Îª£º2£¬-2£¬1£®
µãÆÀ£º±¾Ì⿼²éÁË·ÖʽµÄ¼Ó¼õºÍÒòʽ·Ö½â£¬ÊìϤ·ÖʽµÄÏà¹ØÔËËãÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
| A¡¢ |
| B¡¢ |
| C¡¢ |
| D¡¢ |
ÏÂÁÐÃüÌâÊÇÕæÃüÌâµÄÊÇ£¨¡¡¡¡£©
| A¡¢ÏàµÈµÄ½ÇÊǶԶ¥½Ç |
| B¡¢Á½Ö±Ïß±»µÚÈýÌõÖ±ÏßËù½Ø£¬ÄÚ´í½ÇÏàµÈ |
| C¡¢Èôm2=n2£¬Ôòm=n |
| D¡¢Ò»ÌõÖ±½Ç±ßºÍб±ß¶ÔÓ¦³É±ÈÀýµÄÁ½¸öÖ±½ÇÈý½ÇÐÎÏàËÆ |
| A¡¢1£º14 | B¡¢3£º14 |
| C¡¢1£º16 | D¡¢3£º16 |
¸ùʽ
µÄÖµÊÇ£¨¡¡¡¡£©
| 52 |
| A¡¢5 | B¡¢-5 | C¡¢¡À5 | D¡¢25 |