题目内容

11.同学们小学学习了正方形,正方形就是四条边都相等,四个角都是直角.如图,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作正方形ABME和正方形ACNF,射线GA交EF于点H,试探究HE与HF之间的数量关系,并说明理由.

分析 过点E作EP⊥GA,FQ⊥GA,垂足分别为P、Q.根据三角形相似和全等三角形的判定和性质即可解题.

解答 解:HE=HF.
理由:过点E作EP⊥GA,FQ⊥GA,垂足分别为P、Q.
∵四边形ABME是矩形,
∴∠BAE=90°,
∴∠BAG+∠EAP=90°,
又∵AG⊥BC,
∴∠BAG+∠ABG=90°,
∴∠ABG=∠EAP.
∵∠AGB=∠EPA=90°,
∴△ABG∽△EAP,
∴AG:EP=AB:EA.
同理△ACG∽△FAQ,
∴AG:FQ=AC:FA.
∵AB=k•AE,AC=k•AF,
∴AB:EA=AC:FA=k,
∴AG:EP=AG:FQ.
∴EP=FQ.
在Rt△EPH和Rt△FQH中,
$\left\{\begin{array}{l}{∠EPH=∠FQA}\\{∠EHP=∠FHQ}\\{EP=FQ}\end{array}\right.$,
∴Rt△EPH≌Rt△FQH(AAS).
∴HE=HF.

点评 本题考查了三角形相似的判定以及性质的综合应用,兼顾了全等三角形的证明以及全等三角形对应边相等的性质,本题中求证三角形相似是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网