题目内容
| 3 |
(1)∠PBA的度数等于
(2)求A、B两点间的距离(结果精确到0.1米,参考数据:
| 2 |
| 3 |
考点:解直角三角形的应用-仰角俯角问题,解直角三角形的应用-坡度坡角问题
专题:几何图形问题
分析:(1)根据俯角以及坡度的定义即可求解;
(2)在直角△PHB中,根据三角函数即可求得PB的长,然后在直角△PBA中利用三角函数即可求解.
(2)在直角△PHB中,根据三角函数即可求得PB的长,然后在直角△PBA中利用三角函数即可求解.
解答:解:(1)∵山坡的坡度i(即tan∠ABC)为1:
.
∴tan∠ABC=
,
∴∠ABC=30°;
∵从P点望山脚B处的俯角60°,
∴∠PBH=60°,
∴∠ABP=180°-30°-60°=90°
故答案为:90.
(2)由题意得:∠PBH=60°,
∵∠ABC=30°,
∴∠ABP=90°,
∴△PAB为直角三角形,
又∵∠APB=45°,
在直角△PHB中,PB=PH÷sin∠PBH=45÷
=30
(m).
在直角△PBA中,AB=PB•tan∠BPA=30
≈52.0(m).
故A、B两点间的距离约为52.0米.
| 3 |
∴tan∠ABC=
| ||
| 3 |
∴∠ABC=30°;
∵从P点望山脚B处的俯角60°,
∴∠PBH=60°,
∴∠ABP=180°-30°-60°=90°
故答案为:90.
(2)由题意得:∠PBH=60°,
∵∠ABC=30°,
∴∠ABP=90°,
∴△PAB为直角三角形,
又∵∠APB=45°,
在直角△PHB中,PB=PH÷sin∠PBH=45÷
| ||
| 2 |
| 3 |
在直角△PBA中,AB=PB•tan∠BPA=30
| 3 |
故A、B两点间的距离约为52.0米.
点评:本题主要考查了俯角的问题以及坡度的定义,正确利用三角函数是解题的关键.
练习册系列答案
相关题目