题目内容
如图,点A、B、C、D、E在圆上,弦的延长线与弦的延长线相交于点,AB是圆的直径,D是BC的中点.求证:AB=AC.
如图,在△ABC中,两条中线BE,CD相交于点O,则= 。
如图,二次函数y1=ax2+bx+3的图象与x轴相交于点A(﹣3,0)、B(1,0),交y轴于点C,C、D是二次函数图象上的一对对称点,一次函数y2=mx+n的图象经过B、D两点.
(1)求二次函数的解析式及点D的坐标;
(2)根据图象写出y2>y1时,x的取值范围.
二次函数y=kx2﹣6x+3的图象与x轴有交点,则k的取值范围是( )
A.k<3 B.k<3且k≠0 C.k≤3 D.k≤3且k≠0
如图,将线段AB绕点A逆时针旋转60°得AC,连接BC,作△ABC的外接圆⊙O,点P为劣弧上的一个动点,弦AB、CP相交于点D.
(1)求∠APB的大小;
(2)当点P运动到何处时,PD⊥AB?并求此时CD:CP的值;
(3)在点P运动过程中,比较PC与AP+PB的大小关系,并对结论给予证明.
如图,在8×11的方格纸中,△ABC的顶点均在小正方形的顶点处.
(1)画出△ABC绕点A顺时针方向旋转90°得到的△A′B′C′;
(2)求点B运动到点B′所经过的路径的长度.
点P(3,﹣4)关于原点对称的点的坐标是 .
计算
(1) (2)
(3) (4)
(5) (6)
如果获利100元记作+100元,那么支出200元记作
A、+200元 B、-200元 C、+100元 D、-100元