题目内容
已知菱形的边长为3,一个内角为60°,则该菱形的面积是_____.
下列关系式中,正确的是( )
A. B.
C. D.
菱形ABCD中, ,其周长为32,则菱形面积为____________.
【答案】
【解析】分析:根据菱形的性质易得AB=BC=CD=DA=8,AC⊥BD, OA=OC,OB=OD,再判定△ABD为等边三角形,根据等边三角形的性质可得AB=BD=8,从而得OB=4,在Rt△AOB中,根据勾股定理可得OA=4,继而求得AC=2AO=,再由菱形的面积公式即可求得菱形ABCD的面积.
详【解析】∵菱形ABCD中,其周长为32,
∴AB=BC=CD=DA=8,AC⊥BD, OA=OC,OB=OD,
∵,
∴△ABD为等边三角形,
∴AB=BD=8,
∴OB=4,
在Rt△AOB中,OB=4,AB=8,
根据勾股定理可得OA=4,
∴AC=2AO=,
∴菱形ABCD的面积为: =.
点睛:本题考查了菱形性质:1.菱形的四个边都相等;2.菱形对角线相互垂直平分,并且每一组对角线平分一组对角;3.菱形面积公式=对角线乘积的一半.
【题型】填空题【结束】17
如图,在△ABC中, , AC=BC=3, 将△ABC折叠,使点A落在BC 边上的点D处,EF为折痕,若AE=2,则的值为_____________.
如图,抛物线y=ax2﹣2ax+c(a≠0)交x轴于A、B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G.
(1)求抛物线的解析式;
(2)抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长;
(3)在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似?若存在,求出此时m的值,并直接判断△PCM的形状;若不存在,请说明理由.
如图,O是菱形ABCD对角线AC与BD的交点,CD=5cm,OD=3cm;过点C作CE∥DB,过点B作BE∥AC,CE与BE相交于点E.
(1)求OC的长;
(2)求四边形OBEC的面积.
如图,AB是⊙O的直径,弦CD⊥AB于点E,连结OC,若OC=5,CD=8,则tan∠COE=( )
A. B. C. D.
﹣的绝对值为( )
A. ﹣2 B. ﹣ C. D. 1
将抛物线y=2x2向右平移3个单位,再向下平移1个单位,所得抛物线的表达式为_______.
先化简,再求值:(a+1-)÷(),其中a=2+.
【答案】3+2
【解析】分析:用分式的混合运算法则把原分式化简,再把a的值代入求解.
详【解析】(a+1-)÷()
=(-)÷()
=·
=a(a-2).
当a=2+时,
原式=(2+)(2+-2)
=3+.
点睛:对于分式化简求值问题,要先确定运算顺序,再根据分式的混合运算法则进行计算,最后把相关字母的值代入化简后的式子求值.当分子分母是多项式时,应先分解因式,如果分子分母有公因式,要约分.
【题型】解答题【结束】20
已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.
(1)求证:△ABD≌△CAE;
(2)连接DE,线段DE与AB之间有怎样的位置和数量关系?请证明你的结论.