题目内容
解方程的步骤中,去分母后的方程为( )
A. 3(3x﹣7)﹣2+2x=6 B. 3x﹣7﹣(1+x)=1
C. 3(3x﹣7)﹣2(1﹣x)=1 D. 3(3x﹣7)﹣2(1+x)=6
已知:如图1,把一张矩形纸片ABCD沿对角线BD折叠,将重合部分(△BFD)剪去,得到△ABF和△EDF.
(1)求证:FB=FD;
(2)求证:△ABF≌△EDF;
(3)将△ABF与△EDF不重合地拼在一起,可拼成特殊三角形和特殊四边形,请你按照下列要求将拼图补画完整(图2).
如果有理数x,y满足方程组那么x2-y2=________.
计算.
(1)y=2y﹣1
(2)5(x﹣5)+2(x﹣12)=0
(3)y﹣=1﹣
(4)2(x﹣2)﹣(4x﹣1)=3(1﹣x)
(5)
(6).
已知下列方程中:①x﹣2=、②0.3x=1、③=5x﹣1、④x﹣4x=3、⑤x=6、⑥x+2y=0、⑦x2﹣x+2=x2+3x,其中是一元一次方程的有_____个.
【问题情境】
在△ABC中,AB=AC,点P为BC所在直线上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.当P在BC边上时(如图1),求证:PD+PE=CF.
图① 图② 图③
证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.(不要证明)
【变式探究】
当点P在CB延长线上时,其余条件不变(如图3).试探索PD、PE、CF之间的数量关系并说明理由.
请运用上述解答中所积累的经验和方法完成下列两题:
【结论运用】
如图4,将长方形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH的值;
【迁移拓展】
在直角坐标系中.直线l1:y=与直线l2:y=2x+4相交于点A,直线l1、l2与x轴分别交于点B、点C.点P是直线l2上一个动点,若点P到直线l1的距离为1.求点P的坐标.
如图,在正方形 ABCD 外侧,作等边三角形 ADE,AC,BE 相交于点 F,则∠BFC 为______度.
已知x=,则代数式(7+4)x2+(2+)x+的值是( )
A. 0 B. C. D. 2﹣
若A(x1,y1)、B(x2,y2)是一次函数y=ax―3x+5图像上的不同的两个点,记W=(x1―x2)( y1―y2),则当W<0时,a的取值范围是 ( )
A. a<0 B. a>0 C. a<3 D. a>3