题目内容
7、多边形内角和与某一个外角的度数总和是1350°,求多边形的边数.
分析:根据n边形的内角和定理可知:n边形内角和为(n-2)×180°.设这个外角度数为x度,利用方程即可求出答案.
解答:解:设这个外角度数为x,根据题意,得
(n-2)×180°+x=1350°,
解得:x=1350°-180°n+360°=1710°-180°n,
由于0<x<180°,即0<1710°-180°n<180°,
解得8.5<n<9.5,
所以n=9.
故多边形的边数是9.
(n-2)×180°+x=1350°,
解得:x=1350°-180°n+360°=1710°-180°n,
由于0<x<180°,即0<1710°-180°n<180°,
解得8.5<n<9.5,
所以n=9.
故多边形的边数是9.
点评:主要考查了多边形的内角和定理.
n边形的内角和为:180°•(n-2).
n边形的内角和为:180°•(n-2).
练习册系列答案
相关题目