题目内容
(6分)如图,在一块长35m,宽26m的矩形地面上,修建同样宽的两条互相垂直的道路(两条道路与矩形的一条边平行),剩余部分栽种花草,要使剩余部分的面积为850m,道路的宽应为多少?
![]()
道路宽应为1m
【解析】
试题分析:把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的种植园地是一个长方形,根据长方形的面积公式列方程.
试题解析:设道路的宽应为x米,由题意有
(35-x)(26-x)=850,
整理,得x2-61x+60=0,
解得x1=1,x2=60(不合题意,舍去).
答:道路的宽应为1米.
考点:一元二次方程的应用.
考点分析: 考点1:一元二次方程 定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
一元二次方程的一般形式:
它的特征是:等式左边是一个关于未知数x的二次多项式,等式右边是零,其中 ax2叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。 试题属性
- 题型:
- 难度:
- 考核:
- 年级:
练习册系列答案
相关题目