题目内容


如图,在直角坐标系中,点A的坐标是(0.3),点C是x轴上的一个动点,点C在x轴上移动时,始终保持△ACP是等边三角形.当点C移动到点O时,得到等边三角形AOB(此时点P与点B重合).

(1)点C在移动的过程中,当等边三角形ACP的顶点P在第三象限时(如图),求证:△AOC≌△ABP;由此你发现什么结论?

(2)求点C在x轴上移动时,点P所在函数图象的解析式.


(1)证明:∵△AOB与△ACP都是等边三角形,

∴AO=AB,AC=AP,∠CAP=∠OAB=60°,

∴∠CAP+∠PAO=∠OAB+∠PAO,

∴∠CAO=∠PAB,

在△AOC与△ABP中,

∴△AOC≌△ABP(SAS).

∴∠COA=∠PBA=90°,

∴点P在过点B且与AB垂直的直线上或PB⊥AB或∠ABP=90°.

故结论是:点P在过点B且与AB垂直的直线上或PB⊥AB或∠ABP=90°;

(2)解:点P在过点B且与AB垂直的直线上.

∵△AOB是等边三角形,A(0,3),

∴B().

当点C移动到点P在y轴上时,得P(0,﹣3).

设点P所在的直线方程为:y=kx+b(k≠0).把点B、P的坐标分别代入,得

解得

所以点P所在的函数图象的解析式为:y=x﹣3.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网