题目内容
如图,在直角坐标系中,点A的坐标是(0.3),点C是x轴上的一个动点,点C在x轴上移动时,始终保持△ACP是等边三角形.当点C移动到点O时,得到等边三角形AOB(此时点P与点B重合).
(1)点C在移动的过程中,当等边三角形ACP的顶点P在第三象限时(如图),求证:△AOC≌△ABP;由此你发现什么结论?
(2)求点C在x轴上移动时,点P所在函数图象的解析式.
![]()
(1)证明:∵△AOB与△ACP都是等边三角形,
∴AO=AB,AC=AP,∠CAP=∠OAB=60°,
∴∠CAP+∠PAO=∠OAB+∠PAO,
∴∠CAO=∠PAB,
在△AOC与△ABP中,
![]()
∴△AOC≌△ABP(SAS).
∴∠COA=∠PBA=90°,
∴点P在过点B且与AB垂直的直线上或PB⊥AB或∠ABP=90°.
故结论是:点P在过点B且与AB垂直的直线上或PB⊥AB或∠ABP=90°;
(2)解:点P在过点B且与AB垂直的直线上.
∵△AOB是等边三角形,A(0,3),
∴B(
,
).
当点C移动到点P在y轴上时,得P(0,﹣3).
设点P所在的直线方程为:y=kx+b(k≠0).把点B、P的坐标分别代入,得
,
解得
,
所以点P所在的函数图象的解析式为:y=
x﹣3.
已知a>b>0,下列结论错误的是( )
|
| A. | a+m>b+m | B. |
| C. | ﹣2a>﹣2b | D. |
|
下列调查中,①调查本班同学的视力;②调查一批节能灯管的使用寿命;③为保证“神舟9号”的成功发射,对其零部件进行检查;④对乘坐某班次客车的乘客进行安检.其中适合采用抽样调查的是( )
|
| A. | ① | B. | ② | C. | ③ | D. | ④ |
如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,以斜边AB上的一点O为圆心所作的半圆分别与AC、BC相切于点D、E,则AD为( )
![]()
|
| A. | 2.5 | B. | 1.6 | C. | 1.5 | D. | 1 |