题目内容
如图,点D、E分别为△ABC的边AB、AC的中点,同时,点F在DE上,且∠AFB=90°,已知AB=5,BC=8,那么EF的长为 .
如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,图中阴影部分的面积为( ).
A. B. C.1﹣ D.1﹣
若x2+ax+b=(x+3)(x﹣4),则a= ,b= .
要使分式有意义,则x的取值范围是( )
A.x≠1 B.x>1 C.x<1 D.x≠﹣1
一个不透明的口袋里装有分别标有汉字“幸”、“福”、“聊”、“城”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.
(1)若从中任取一个球,球上的汉字刚好是“福”的概率为多少?
(2)小颖从中任取一球,记下汉字后放回袋中,然后再从中任取一球,求小颖取出的两个球上汉字恰能组成“幸福”或“聊城”的概率.
如图,在平面直角坐标系中,△ABC绕某一点P旋转一定的角度得到△A′B′C′,根据图形变换前后的关系可得点P的坐标为( ).
A.(0,1) B.(1,﹣1) C.(0,﹣1) D.(1,0)
下列运算正确的是( ).
A.a2+a3=a5
B.(﹣2a2)3=﹣6a6
C.(2a+1)(2a﹣1)=2a2﹣1
D.(2a3﹣a2)÷a2=2a﹣1
使关于x的分式方程=2的解为非负数,且使反比例函数y=图象过第一、三象限时满足条件的所有整数k的和为( ).
A.0 B.1 C.2 D.3
某校在基地参加社会实践话动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长37米的不锈钢栅栏围成,与墙平行的一边留一个宽为3米的出入口,如图所示,如何设计才能使园地的面积最大?如图是两位学生争议的情境:请根据上面的信息,解决问题:
(1)设AB=x米(x>0),试用含x的代数式表示BC的长;
(2)请你判断谁的说法正确,为什么?