题目内容
如果x2+2x=3,那么x4+7x3+8x2-13x+15=______.
x2+2x=3
(x-1)(x+3)=0
则x=1或-3
所以x4+7x3+8x2-13x+15=x2(x2+2x)+5x3+8x2-13x+15
=x2×3+5x3+8x2-13x+15
=5x3+11x2-13x+15
=5x(x2+2x)+x2-13x+15
=15x+x2-13x+15
=x2+2x+15
=3+15
=18
故答案为18
(x-1)(x+3)=0
则x=1或-3
所以x4+7x3+8x2-13x+15=x2(x2+2x)+5x3+8x2-13x+15
=x2×3+5x3+8x2-13x+15
=5x3+11x2-13x+15
=5x(x2+2x)+x2-13x+15
=15x+x2-13x+15
=x2+2x+15
=3+15
=18
故答案为18
练习册系列答案
相关题目
如果x2+2x+
=(x+1)2+m,则m的值分别是( )
| 1 |
| 2 |
| A、1 | ||
| B、-1 | ||
C、-
| ||
D、
|
如果x2-2x-m=0有两个相等的实数根,那么x2-mx-2=0的两根和是( )
| A、-2 | B、1 | C、-1 | D、2 |