题目内容
在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点.过点A作AF∥BC交于BE的延长线于点F.
(1)求证:△AEF≌△DEB;
(2)若AC=4,AB=5,求菱形ADCF的面积.
若水位上升15米记作+15米,则下降5米记作______米.
﹣2的倒数是( )
A. 2 B. C. D. ﹣2
如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE.下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有( )
A. 4个 B. 3个 C. 2个 D. 1个
下面设计的原理不是利用三角形稳定性的是( )
A. 三角形的房架 B. 由四边形组成的伸缩门
C. 斜钉一根木条的长方形窗框 D. 自行车的三角形车架
如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点.点E在CD上,且DE=2CE,连接BE.过点C作CF⊥BE,垂足是F,连接OF,则OF的长为 .
若关于的方程有两个相等的实数根,则的值是 .
如图所示,直线y=﹣2x+b与反比例函数y=交于点A、B,与x轴交于点C.
(1)若A(﹣3,m)、B(1,n).直接写出不等式﹣2x+b>的解.
(2)求sin∠OCB的值.
(3)若CB﹣CA=5,求直线AB的解析式.
如图,小军、小珠之间的距离为2.7 m,他们在同一盏路灯下的影长分别为1.8 m,1.5 m,已知小军、小珠的身高分别为1.8 m,1.5 m,则路灯的高为____m.