题目内容

某工厂大门是抛物线形水泥建筑,大门地道宽为4m,顶部距离地面的高度为4.4m,现有一辆满载货物的汽车欲通大门,其装货宽度为2.4m,该车要想过此门,装货后的最大高度为多少?
考点:二次函数的应用
专题:
分析:如果设C点是原点,那么A的坐标就是(-2,-4.4),B的坐标是(2,-4.4),可设这个函数为y=kx2,那么将A的坐标代入后即可得出y=-1.1x2,那么大门顶部宽2.4m的部分的两点的横坐标就应该是-1.2和1.2,因此将x=1.2代入函数式中可得y≈-1.6,因此大门顶部宽2.4m部分离地面的高度是4.4-1.6=2.8m,从而得到装货后的最大高度.
解答:解:根据题意知,A(-2,-4.4),B(2,-4.4),设这个函数为y=kx2
将A的坐标代入,得y=-1.1x2
∴E、F两点的横坐标就应该是-1.2和1.2,
∴将x=1.2代入函数式,得
y≈-1.6,
∴GH=CH-CG=4.4-1.6=2.8m,
因此这辆汽车装货后的最大高度为2.8m.
点评:本题主要结合实际问题考查了二次函数的应用,得出二次函数式进而求出大门顶部宽2.4m部分离地面的高度是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网