ÌâÄ¿ÄÚÈÝ
1£®Èçͼ1£¬Æ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬µãD£¨-4£¬0£©£¬OC=8£¬ÈôÅ×ÎïÏßy=$\frac{1}{3}$x2Æ½ÒÆºó¾¹ýC£¬DÁ½µã£¬µÃµ½Í¼1ÖеÄÅ×ÎïÏßW£®£¨1£©ÇóÅ×ÎïÏßWµÄ±í´ïʽ¼°Å×ÎïÏßWÓëxÖáÁíÒ»¸ö½»µãAµÄ×ø±ê£»
£¨2£©Èçͼ2£¬ÒÔOA£¬OCΪ±ß×÷¾ØÐÎOABC£¬Á¬½áOB£¬Èô¾ØÐÎOABC´ÓOµã³ö·¢ÑØÉäÏßOB·½ÏòÔÈËÙÔ˶¯£¬ËÙ¶ÈΪÿÃë1¸öµ¥Î»µÃµ½¾ØÐÎO¡äA¡äB¡äC¡ä£¬Çóµ±µãO¡äÂäÔÚÅ×ÎïÏßWÉÏʱ¾ØÐεÄÔ˶¯Ê±¼ä£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬Èçͼ3£¬¾ØÐδÓOµã³ö·¢µÄͬʱ£¬µãP´ÓA¡ä³ö·¢ÑؾØÐεıßA¡äB¡ä¡úB¡äC¡äÒÔÿÃë$\frac{2}{5}$¸öµ¥Î»µÄËÙ¶ÈÔÈËÙÔ˶¯£¬µ±µãPµ½´ïC¡äʱ£¬¾ØÐκ͵ãPͬʱֹͣÔ˶¯£¬ÉèÔ˶¯Ê±¼äΪtÃ룮
¢ÙÇëÓú¬tµÄ´úÊýʽ±íʾµãPµÄ×ø±ê£»
¢ÚÒÑÖª£ºµãPÔÚ±ßA¡äB¡äÉÏÔ˶¯Ê±Ëù¾¹ýµÄ·¾¶ÊÇÒ»ÌõÏ߶Σ¬ÇóµãPÔÚ±ßA¡äB¡äÉÏÔ˶¯¶àÉÙÃëʱ£¬µãDµ½CPµÄ¾àÀë×î´ó£®
·ÖÎö £¨1£©ÒÀÌâÒâµÃ£ºD£¨-4£¬0£©£¬C£¨0£¬-8£©£¬¸ù¾Ý´ý¶¨ÏµÊý·¨¿ÉÇóÅ×ÎïÏßwµÄ½âÎöʽ£¬½øÒ»²½µÃµ½Å×ÎïÏßwµÄÁíÒ»½»µã£»
£¨2£©½â·¨Ò»£ºÒÀÌâÒ⣺ÔÚÔ˶¯¹ý³ÌÖУ¬¾¹ýtÃëºó£¬µãO¡äµÄ×ø±êΪ£º£¨$\frac{3}{5}$t£¬-$\frac{4}{5}$t£©£¬½«O¡ä´úÈëy=$\frac{1}{3}$£¨x-1£©2-8$\frac{1}{3}$£¬½â·½³Ì¼´¿ÉÇó½â£»
½â·¨¶þ£ºÉäÏßOB¡ä½âÎöʽΪ£ºy=-$\frac{4}{3}$x£¬ÁªÁ¢Å×ÎïÏßwµÄ½âÎöʽ£¬½â·½³Ì×é¼´¿ÉÇó½â£»
£¨3£©¢ÙÉèP£¨x£¬y£©£¬·ÖÁ½ÖÖÇé¿ö£º£¨I£©µ±0¡Üt¡Ü20ʱ£¬¼´µãPÔÚA¡äB¡ä±ßÉÏ£»£¨II£©µ±20£¼t¡Ü35ʱ£¬¼´µãPÔÚB¡äC¡ä±ßÉÏ£¨²»°üº¬B¡äµã£©£»½øÐÐÌÖÂÛ¼´¿ÉÇó½â£»
¢Ú·ÖÁ½ÖÖÇé¿ö£ºµ±µãPÔÚA¡äB¡äÔ˶¯Ê±£¬0¡Üt¡Ü20£»µ±CP¡ÍAPʱ£¬CPÈ¡µÃ×îСֵ£»½øÐÐÌÖÂÛ¼´¿ÉÇó½â£®
½â´ð ½â£º£¨1£©ÒÀÌâÒâµÃ£ºD£¨-4£¬0£©£¬C£¨0£¬-8£©£¬
ÉèÅ×ÎïÏßwµÄ½âÎöʽΪy=$\frac{1}{3}$£¨x+m£©2+n£¬Ôò
$\left\{\begin{array}{l}{\frac{1}{3}£¨-4+m£©^{2}+n=0}\\{\frac{1}{3}{m}^{2}+n=-8}\end{array}\right.$£¬
½âµÃm=-1£¬n=-8$\frac{1}{3}$£®
¹ÊÅ×ÎïÏßwµÄ½âÎöʽΪ£ºy=$\frac{1}{3}$£¨x-1£©2-8$\frac{1}{3}$£¬
ÁíÒ»½»µãΪ£¨1+1-£¨-4£©£¬0£©£¬¼´£¨6£¬0£©£»
£¨2£©½â·¨Ò»£ºÒÀÌâÒ⣺ÔÚÔ˶¯¹ý³ÌÖУ¬
¾¹ýtÃëºó£¬µãO¡äµÄ×ø±êΪ£º£¨$\frac{3}{5}$t£¬-$\frac{4}{5}$t£©£¬
½«O¡ä´úÈëy=$\frac{1}{3}$£¨x-1£©2-8$\frac{1}{3}$£¬
ÉáÈ¥¸ºÖµµÃ£ºt=$\frac{20}{3}$£¬
¾¹ý$\frac{20}{3}$ÃëO¡äÂäÔÚÅ×ÎïÏßwÉÏ£®
½â·¨¶þ£ºÉäÏßOB¡ä½âÎöʽΪ£ºy=-$\frac{4}{3}$x£¬
¡à$\left\{\begin{array}{l}{y=-\frac{4}{3}x}\\{y=\frac{1}{3}{x}^{2}-\frac{2}{3}x-8}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{x=4}\\{y=-\frac{16}{3}}\end{array}\right.$£®
¡àO¡ä£¨4£¬-$\frac{16}{3}$£©£¬
¡àOO¡ä=$\sqrt{{4}^{2}+£¨\frac{16}{3}£©^{2}}$=$\frac{20}{3}$£¬
¡à¾¹ý$\frac{20}{3}$ÃëO¡äÂäÔÚÅ×ÎïÏßWÉÏ£»
£¨3£©¢ÙÉèP£¨x£¬y£©£¬
£¨I£©µ±0¡Üt¡Ü20ʱ£¬¼´µãPÔÚA¡äB¡ä±ßÉÏ£¬A¡äP=$\frac{2}{5}$t£¬A¡ä£¨6+$\frac{3}{5}$t£¬-$\frac{4}{5}$t£©£¬
¡àx=6+$\frac{3}{5}$t£¬y=-$\frac{6}{5}$t£»
£¨II£©µ±20£¼t¡Ü35ʱ£¬¼´µãPÔÚB¡äC¡ä±ßÉÏ£¨²»°üº¬B¡äµã£©£¬
B¡äP=$\frac{2}{5}$t-8£¬B¡ä£¨6+$\frac{3}{5}$t£¬-8-$\frac{4}{5}$t£©£¬
¡àx=$\frac{1}{5}$t+14£¬y=-8-$\frac{4}{5}$t£®
×ÛÉÏËùÊö£ºµ±0¡Üt¡Ü20ʱ£¬P£¨6+$\frac{3}{5}$t£¬-$\frac{6}{5}$t£©£»µ±20£¼t¡Ü35ʱ£¬P£¨$\frac{1}{5}$t+14£¬-8-$\frac{4}{5}$t£©£»
¢ÚÈçͼ£º![]()
µ±µãPÔÚA¡äB¡äÔ˶¯Ê±£¬0¡Üt¡Ü20£¬
µãPËù¾¹ýµÄ·¾¶ËùÔÚº¯Êý½âÎöʽΪ£ºy=-2x+12£¬
ÓÖ¡ßÖ±ÏßCD½âÎöʽΪ£ºy=-2x+8£¬
¡àDC¡ÎAP£¬
¡à¡÷DCPÃæ»ýΪ¶¨Öµ£¬
¡àCPÈ¡µÃ×îСֵʱ£¬µãDµ½CPµÄ¾àÀë×î´ó£»
Èçͼ£¬![]()
µ±CP¡ÍAPʱ£¬CPÈ¡µÃ×îСֵ
¹ýµãP×÷PM¡ÍyÖáÓÚµãM£¬Ôò¡ÏPMC=90¡ã
¡ßP£¨6+$\frac{3}{5}$t£¬-$\frac{6}{5}$t£©£¬
¡àCM=8-$\frac{6}{5}$t£¬PM=6+$\frac{3}{5}$t£¬
¡ß¡ÏDCO+¡ÏPCM=90¡ã£¬
¡ÏCPM+¡ÏPCM=90¡ã
¡à¡ÏCPM=¡ÏDCO£¬
¡àtan¡ÏCPM=tan¡ÏDCO=$\frac{1}{2}$£¬
ÔÚRt¡÷PMCÖУ¬¡ÏPMC=90¡ã
¡àPM=2CM£¬
¡àt=$\frac{10}{3}$£¬
¼ìÑ飺0¡Ü$\frac{10}{3}$¡Ü20£¬
¡à¾¹ý$\frac{10}{3}$Ãëʱ£¬µãDµ½CPµÄ¾àÀë×î´ó£®
µãÆÀ ´ËÌ⿼²éÁËÅ×ÎïÏß½âÎöʽµÄÈ·¶¨¡¢¾ØÐεÄÐÔÖÊ¡¢·½³Ì˼ÏëµÈÖØÒªÖªÊ¶µã£¬£¨3£©¢Ù¢ÚСÌâÖУ¬¶¼Óõ½ÁË·ÖÀàÌÖÂÛµÄÊýѧ˼Ï룬ÄѵãÔÚÓÚ¿¼ÂÇÎÊÌâÒªÈ«Ãæ£¬×öµ½²»Öز»Â©£®
| A£® | 520̨ | B£® | 550̨ | C£® | 600̨ | D£® | 620̨ |
| A£® | Èý½ÇÐÎ | B£® | ÌÝÐÎ | C£® | ³¤·½ÐÎ | D£® | Õý·½ÐÎ |