题目内容
解不等式组: .
一元二次方程x(x+2)=0的解是( )
A.x=0 B.x=2 C.x1=0,x2=2 D.x1=0,x2=-2
(1)从A地到B地,某甲走直径AB上方的半圆途径;乙先走直径AC上方半圆的途径,再走直径CB下方半圆的途径,如图1,已知AB=40米,AC=30米,计算个人所走的路程,并比较两人所走路程的远近;
(2)如果甲.乙走的路程图改成图2,两人走的路程远近相同吗?
在10×10的正方形网格纸上,每个小正方形的边长都为1.如果以该网格中心为圆心,以5为半径画圆,那么在该圆周上的格点共有( )
A. 4个 B. 8个 C. 12个 D. 16个
第一中学组织七年级部分学生和老师到苏州乐园开展社会实践活动,租用的客车有50座和30座两种可供选择.学校根据参加活动的师生人数计算可知:若只租用30座客车x辆,还差5人才能坐满;
(1)则该校参加此次活动的师生人数为 (用含x的代数式表示);
(2)若只租用50座客车,比只租用30座客车少用2辆,求参加此次活动的师生至少有多少人?
(3)已知租用一辆30座客车往返费用为400元,租用一辆50座客车往返费用为600元,学校根据师生人数选择了费用最低的租车方案,总费用为2200元,试求参加此次活动的师生人数.
已知关于x、y的方程组的解满足x+y<10,则m的取值范围是 .
实数a,b,c在数轴上对应的点如下图所示,则下列式子中正确的是( )
A. ac > bc B. |a–b| = a–b
C. –a <–b < c D. –a–c >–b–c
如图,在顶角为的等腰三角形中, ,若过点作于点, . 根据图形计算=__________.
定义:点P为△ABC内部或边上的点,若满足△PAB,△PBC,△PAC至少有一个三角形与△ABC相似(点P不与△ABC顶点重合),则称点P为△ABC的自相似点.
例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠PCB=∠ABC,则△BCP∽△ABC,故点P为△ABC的自相似点.
在平面直角坐标系xOy中,
(1)点A坐标为(, ), AB⊥x轴于B点,在E(2,1),F (, ),G (, ),这三个点中,其中是△AOB的自相似点的是 (填字母);
(2)若点M是曲线C: (, )上的一个动点,N为x轴正半轴上一个动点;
图2
① 如图2, ,M点横坐标为3,且NM = NO,若点P是△MON的自相似点,求点P的坐标;
②若,点N为(2,0),且△MON的自相似点有2个,则曲线C上满足这样条件的点M共有 个,请在图3中画出这些点(保留必要的画图痕迹).