题目内容
如图,梯形ABCD中,AD∥BC,AC,BD相交于点O,过O作BC的平行线分别交AB,CD于点E,F.
(1)求证:OE=OF;
(2)若AD=3,BC=4,求EF的长.
(1)证明:∵AD∥BC,
∴△AOE∽△ABC,△DOF∽△DBC,
∴
=
,
=
,
又∵由AD∥BC得,△ACD∽△OCF,
∴
=
,
∴
=
,
∴OE=OF;
(2)解:∵AD∥BC,
∴△AOD∽△BOC,
∴
=
=
,
∴
=
=
,
∵BC=4,
∴
=
=
,
解得OE=
,
∴EF=OE+OF=
+
=
.
分析:(1)由△AOE和△ABC相似可得
=
,由△DOF和△DBC相似可得
=
,由△ACD和△OCF相似可得
=
,从而得到
=
,即可得证;
(2)根据△AOD和△BOC相似求出
,再求出
,然后求出OE,根据EF=OE+OF即可.
点评:本题考查了相似三角形的判定与性质,根据平行得到三角形相似是解题的关键,也是本题考查的重点.
∴△AOE∽△ABC,△DOF∽△DBC,
∴
又∵由AD∥BC得,△ACD∽△OCF,
∴
∴
∴OE=OF;
(2)解:∵AD∥BC,
∴△AOD∽△BOC,
∴
∴
∵BC=4,
∴
解得OE=
∴EF=OE+OF=
分析:(1)由△AOE和△ABC相似可得
(2)根据△AOD和△BOC相似求出
点评:本题考查了相似三角形的判定与性质,根据平行得到三角形相似是解题的关键,也是本题考查的重点.
练习册系列答案
相关题目
A、
| ||||
B、4
| ||||
C、
| ||||
D、4
|