题目内容
【题目】如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕点A逆时针旋转,使AB与AC重合,点D旋转到点E,则∠CDE的正切值为 .
![]()
【答案】
.
【解析】
试题解析:∵△ABC为等边三角形,
∴AB=AC,∠BAC=60°,
∵△ABD绕A点逆时针旋转得△ACE,
∴AD=AE=5,∠DAE=∠BNAC=60°,CE=BD=6,
∴△ADE为等边三角形,
∴DE=AD=5,
过E点作EH⊥CD于H,如图,
![]()
设DH=x,则CH=4-x,
在Rt△DHE中,EH2=52-x2,
在Rt△DHE中,EH2=62-(4-x)2,
∴52-x2=62-(4-x)2,解得x=
,
∴EH=
,
在Rt△EDH中,tan∠HDE=
,
即∠CDE的正切值为
.
练习册系列答案
相关题目
【题目】在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共10只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:
摸球的次数 | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到白球的次数 | 58 | 96 | 116 | 295 | 484 | 601 |
摸到白球的频率 | 0.58 | 0.64 | 0.58 | 0.59 | 0.605 | 0.601 |
(1)请估计:当
很大时,摸到白球的频率将会接近 ;(保留二个有效数字)
(2)试估算口袋中黑、白两种颜色的球各有多少只?
(3)请画树状图或列表计算:从中一次摸两只球,这两只球颜色不同的概率是多少?