题目内容
(1)求证:四边形BMNP是平行四边形;
(2)线段MN与CD交于点Q,连接AQ,若△MCQ∽△AMQ,则BM与MC存在怎样的数量关系?请说明理由.
考点:相似三角形的判定与性质,平行四边形的判定与性质,正方形的性质
专题:
分析:(1)根据正方形的性质可得AB=BC,∠ABC=∠C,然后利用“边角边”证明△ABM和△BCP全等,根据全等三角形对应边相等可得AM=BP,∠BAM=∠CBP,再求出AM⊥BP,从而得到MN∥BP,然后根据一组对边平行且相等的四边形是平行四边形证明即可;
(2)根据同角的余角相等求出∠BAM=∠CMQ,然后求出△ABM和△MCQ相似,根据相似三角形对应边成比例可得
=
,再求出△AMQ∽△ABM,根据相似三角形对应边成比例可得
=
,从而得到
=
,即可得解.
(2)根据同角的余角相等求出∠BAM=∠CMQ,然后求出△ABM和△MCQ相似,根据相似三角形对应边成比例可得
| AB |
| MC |
| AM |
| MQ |
| AB |
| BM |
| AM |
| MQ |
| AB |
| MC |
| AB |
| BM |
解答:(1)证明:在正方形ABCD中,AB=BC,∠ABC=∠C,
在△ABM和△BCP中,
,
∴△ABM≌△BCP(SAS),
∴AM=BP,∠BAM=∠CBP,
∵∠BAM+∠AMB=90°,
∴∠CBP+∠AMB=90°,
∴AM⊥BP,
∵AM并将线段AM绕M顺时针旋转90°得到线段MN,
∴AM⊥MN,且AM=MN,
∴MN∥BP,
∴四边形BMNP是平行四边形;
(2)解:BM=MC.
理由如下:∵∠BAM+∠AMB=90°,∠AMB+∠CMQ=90°,
∴∠BAM=∠CMQ,
又∵∠ABC=∠C=90°,
∴△ABM∽△MCQ,
∴
=
,
∵△MCQ∽△AMQ,
∴△AMQ∽△ABM,
∴
=
,
∴
=
,
∴BM=MC.
在△ABM和△BCP中,
|
∴△ABM≌△BCP(SAS),
∴AM=BP,∠BAM=∠CBP,
∵∠BAM+∠AMB=90°,
∴∠CBP+∠AMB=90°,
∴AM⊥BP,
∵AM并将线段AM绕M顺时针旋转90°得到线段MN,
∴AM⊥MN,且AM=MN,
∴MN∥BP,
∴四边形BMNP是平行四边形;
(2)解:BM=MC.
理由如下:∵∠BAM+∠AMB=90°,∠AMB+∠CMQ=90°,
∴∠BAM=∠CMQ,
又∵∠ABC=∠C=90°,
∴△ABM∽△MCQ,
∴
| AB |
| MC |
| AM |
| MQ |
∵△MCQ∽△AMQ,
∴△AMQ∽△ABM,
∴
| AB |
| BM |
| AM |
| MQ |
∴
| AB |
| MC |
| AB |
| BM |
∴BM=MC.
点评:本题考查了相似三角形的判定与性质,正方形的性质,全等三角形的判定与性质,平行四边形的判定,(1)求出两个三角形全等是解题的关键,(2)根据相似于同一个三角形的两个三角形相似求出△AMQ∽△ABM是解题的关键.
练习册系列答案
相关题目
2013年12月2日,“嫦娥三号”从西昌卫星发射中心成功发射,在此次任务中,“嫦娥三号”要一次入轨,直接进入近地点约200000米,远地点约380 000 000米的地月转移轨道,其中380 000 000用科学记数法可以表示为( )
| A、38×107 |
| B、3.8×107 |
| C、3.8×108 |
| D、0.38×109 |