题目内容

11.如图1,在平面直角坐标系xOy中,点A在y轴上,点B是第一象限的点,且AB⊥y轴,且AB=OA,点C是线段OA上任意一点,连接BC,作BD⊥BC,交x轴于点D.
(1)依题意补全图1;
(2)用等式表示线段OA,AC与OD之间的数量关系,并证明;
②连接CD,作∠CBD的平分线,交CD边于点H,连接AH,求∠BAH的度数.

分析 (1)根据题意画出图形即可;
(2)①过B作BE⊥x轴于E,则四边形AOEB是矩形,根据矩形的想知道的BE=AO,∠ABE=90°,等量代换得到AB=BE推出△ABC≌△BDE,根据全等三角形的性质得到AC=DE,等量代换即可得到结论;②根据全等三角形的性质得到BC=BD,推出△BCD是等腰直角三角形,于是得到∠BCD=45°,根据等腰三角形的性质得到∠BHC=90°推出A,C,H,B四点共圆,根据圆周角定理即可得到结论.

解答 解:(1)如图1所示,
(2)①OA+AC=OD,
过B作BE⊥x轴于E,
则四边形AOEB是矩形,
∴BE=AO,∠ABE=90°,
∵AB=AO,
∴AB=BE,
∵BD⊥BC,
∴∠CBD=90°,
∴∠ABC=∠DBE,
在△ABC与△BDE中,$\left\{\begin{array}{l}{∠BAC=∠BED}\\{∠ABC=∠DBE}\\{AB=BE}\end{array}\right.$,
∴△ABC≌△BDE,
∴AC=DE,
∵OE=AB=OA,
∴AO+AC=OD;
②如图2,由(1)知:△ABC≌△BDE,
∴BC=BD,
∵BD⊥BC,
∴△BCD是等腰直角三角形,
∴∠BCD=45°,
∵BH平分∠CBD,
∴∠BHC=90°,∵∠BAO=90°,
∴A,C,H,B四点共圆,
∴∠BAH=∠BCH=45°.

点评 本题考查了全等三角形的判定和性质,坐标与图形的性质,角平分线的定义,等腰直角三角形的判定和性质,四点共圆,正确的画出图形是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网