题目内容
方程组的解是 .
成立的条件是 .
(本题满分8分,每小题4分)
(1)
(2)
(本题14分)如图1,在平面直角坐标系中,直线l的函数表达式是.菱形ABCD
的对角线AC、BD在坐标轴上,点A、B的坐标分别是(0,4),(-6,0).P是折线B-A-D上的动点,
过点P作PQ∥y轴交折线B-C-D于点Q.作PG⊥l于点G,连结GQ.设直线l与x轴交于点E,点P的
横坐标为m,
(1)求菱形ABCD的面积;
(2)当点P在AD上运动时,
①求线段PQ的长(用关于m的代数式表示);
②若△PQG为等腰三角形,求m的值;
(3)如图2,连结QE,当点P在AB上运动时,过点Q作QH⊥l于H,若tan∠HQE=,直接写出m的值.
(本题10分)
(1)计算: .
(2)解方程:.
若一个多边形的内角和是900°,则这个多边形的边数是( )
A.5 B.6 C.7 D.8
(本题满分14分)抛物线交轴于A(-4,0)、B两点,交轴于C.将一把宽度为1.2的直尺如图放置在直角坐标系中,使直尺边 ∥,直尺边交轴于E,交AC于F,交抛物线于G,直尺另一边交轴于D.当点D与点A重合时,把直尺沿轴向右平移,当点E与点B重合时,停止平移,在平移过程中,△FDE的面积为S.
(1)请你求出抛物线解析式及S的最大值;
(2)在直尺平移过程中,直尺边上是否存在一点P,使点构成的四边形是这菱形,若
存在,请你求出点P坐标;若不存在,请说明理由;
(3)过G作GH⊥轴于H
① 在直尺平移过程中,请你求出GH+HO的最大值;
②点Q、R分别是HC、HB的中点,请你直接写出在直尺平移过程中,线段QR扫过的图形的周长.
不等式的正整数解有( )
A.2个 B.3个 C.4个 D.5个
某市举办“体彩杯”中学生篮球赛,初中男子组有市直学校的A、B、C三个队和县区学校的D,E,F,G,H五个队,如果从A,B,D,E四个队与C,F,G,H四个队中各抽取一个队进行首场比赛,那么首场比赛出场的两个队都是县区学校队的概率是_________.