题目内容

如图,两圆相交于A,B两点,小圆经过大圆的圆心O,点C、D分别在两圆上,若∠ACB=50°,则∠ADB的度数为(  )
分析:由A,B,O,D都在⊙O上,根据圆内接四边形的性质得到∠D+∠AOB=180°,再根据圆周角定理即可得到∠AOB的度数,进而得出∠ADB的度数
解答:解:如图:连接OA,OB,
∵四边形AOBD是圆内接四边形,
∴∠AOB+∠D=180°,
∵∠ACB=50°,
∴∠AOB=100°,
∴∠ADB=80°.
故选B.
点评:本题考查了圆内接四边形的性质:圆的内接四边形的对角互补;也考查了圆周角定理:同弧所对的圆周角是它所对的圆心角的一半.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网