题目内容
探究性问题:
=
-
,
=
-
,
=
-
,则
=
-
-
.
试用上面规律,计算
+
+
.
| 1 |
| 1×2 |
| 1 |
| 1 |
| 1 |
| 2 |
| 1 |
| 2×3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3×4 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n+1 |
试用上面规律,计算
| 1 |
| (x+1)(x+2) |
| 1 |
| (x+2)(x+3) |
| 1 |
| (x+3)(x+4) |
分析:直接根据题意得出规律,再由此规律进行计算即可.
解答:解:∵
=
-
,
=
-
,
=
-
,
∴
=
-
;
∴原式=
-
+
-
+
-
=
-
=
.
故答案为:
-
.
| 1 |
| 1×2 |
| 1 |
| 1 |
| 1 |
| 2 |
| 1 |
| 2×3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3×4 |
| 1 |
| 3 |
| 1 |
| 4 |
∴
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴原式=
| 1 |
| x+1 |
| 1 |
| x+2 |
| 1 |
| x+2 |
| 1 |
| x+3 |
| 1 |
| x+3 |
| 1 |
| x+4 |
=
| 1 |
| x+1 |
| 1 |
| x+4 |
=
| 3 |
| (x+1)(x+4) |
故答案为:
| 1 |
| n |
| 1 |
| n+1 |
点评:本题考查的是分式的加减,根据题意找出规律是解答此题的关键.
练习册系列答案
相关题目