题目内容
在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.
(1)求证:△ADF∽△DEC;
(2)若AB=4,AD=3,AE=3,求AF的长.
如图,⊙O过点B、C,圆心O在等腰Rt△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为 .
内角和等于外角和2倍的多边形是 边形.
解方程:
若点(-4,y1)、(2,y2)都在直线y=-3x+5上,则y1 y2(填“>”、“=”或“<”).
如图1,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,边AE上有一动点P(不与A,E重合)自A点沿AE方向向E点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为t秒(0<t<5),过P点作ED的平行线交AD于点M,过点M作AE的平行线交DE于点N.
(1)直接写出 D,E 两点的坐标,D( ),E( )
(2)求四边形PMNE的面积S与时间t之间的函数关系式;当t取何值时,S有最大值?
(3)当t为何值时,DP平分∠EDA?
(4)当t为何值时,以A,M,E为顶点的三角形为等腰三角形,并求出相应的时刻点M的坐标.
某检修小组乘一辆检修车沿铁路检修,规定向东走为正,向西走为负,小组的出发地记为0,某天检修完毕时,行走记录(单位:千米)如下:
10,-2,+3,-1,+9,-3,-2,+11,+3,-4,+6.
(1)问收工时,检修小组距出发地有多远?在东侧还是西侧?
(2)若检修车每千米耗油0.8升,求从出发到收工共耗油多少升?
已知二次函数y=x2﹣2bx+c的图象与x轴只有一个交点.
(1)请写出b、c的关系式;
(2)设直线y=7与该抛物线的交点为A、B,求AB的长;
(3)若P(a,﹣a)不在抛物线y=x2﹣2bx+c上,请求出b的取值范围.
杨梅开始采摘啦!每框杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图,则这4框杨梅的总质量是( )
A.19.7千克 B.19.9千克 C.20.1千克 D.20.3千克