题目内容
要使分式有意义,则x的取值范围是( ).
A. x≠1 B. x>1 C. x<1 D. x≠-1
在Rt△ABC中,∠C=90°.
(1)用尺规作图作Rt△ABC的重心P.(保留作图痕迹,不要求写作法和证明);
(2)你认为只要知道Rt△ABC哪一条边的长即可求出它的重心与外心之间的距离?并请你说明理由.
如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃,那么最省事的办法是带( )去配
A. ① B. ② C. ③ D. ①和②
小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是_____________.
如图,给出下列四个条件,AB=DE,BC=EF,∠B=∠E,∠C=∠F,从中任选三个条件能使△ABC≌△DEF的共有( )
A. 1组 B. 2组 C. 3组 D. 4组
在一条笔直的公路上有、两地,甲从地去地,乙从地去地然后立即原路返回地,返回时的速度是原来的2倍,如图是甲、乙两人离地的距离(千米)和时间(小时)之间的函数图象.
请根据图象回答下列问题:
(1)、两地的距离是 千米, ;
(2)求的坐标,并解释它的实际意义;
(3)请直接写出当取何值时,甲乙两人相距15千米.
已知一次函数 的图象过定点M.
①请写出点M的坐标____________,
②若一次函数 的图象与反比例函数的图象相交于点A(p,q).当一次函数y的值随x的值增大而增大时,p的取值范围是____________.
在平面直角坐标系xOy中,对称轴为直线x=1的抛物线y=ax2+bx+8过点(﹣2,0).
(1)求抛物线的表达式,并写出其顶点坐标;
(2)现将此抛物线沿y轴方向平移若干个单位,所得抛物线的顶点为D,与y轴的交点为B,与x轴负半轴交于点A,过B作x轴的平行线交所得抛物线于点C,若AC∥BD,试求平移后所得抛物线的表达式.
若关于的方程的根为,则应取值___.