题目内容
如图,在空间中,与定点的距离等于定长的点的集合叫做球面.定点叫做球心,定长叫做半径.球面被经过球心的平面截得的圆叫做大圆.
探究1:当我们把半径为11 cm的足球看成一个球时,假设有一根无弹性的细线恰好能沿足球的大圆紧紧缠绕一周,将细线的长度增加1米后,细线仍以圆形呈现,且圆心为足球的球心.若将细线与足球表面的间隙记为h1(间隙如图所示),求h1的长;(π取3.14,结果精确到1 cm)
探究2:将探究1中的足球分别换成乒乓球和地球,其他条件都不改变.设乒乓球的半径为r,细线与乒乓球表面的间隙为h2;地球的半径为R,细线与地球表面的间隙为h3,试比较h2与h3的大小,并说明理由.
如图,在△ABC中,AB=AC=10 cm,BC=12 cm,点D是BC边的中点.点P从点B出发,以acm/s(a>0)的速度沿BA匀速向点A运动;点Q同时以1 cm/s的速度从点D出发,沿DB匀速向点B运动,其中一个动点到达端点时,另一个动点也随之停止运动,设它们运动的时间为ts.
(1)若a=2,△BPQ∽△BDA,求t的值;
(2)设点M在AC上,四边形PQCM为平行四边形.
①若a=,求PQ的长;
②是否存在实数a,使得点P在∠ACB的平分线上?若存在,请求出a的值;若不存在,请说明理由.