题目内容
11.计算:$\frac{5x-5y}{3{x}^{2}y}$•$\frac{9x{y}^{2}}{{x}^{2}-{y}^{2}}$.分析 原式约分即可得到结果.
解答 解:原式=$\frac{5(x-y)}{3{x}^{2}y}$•$\frac{9x{y}^{2}}{(x+y)(x-y)}$
=$\frac{15y}{x(x+y)}$.
点评 此题考查了分式的乘除法,分式乘除法的关键是约分,约分的关键是找出分式分子分母的公因式.
练习册系列答案
相关题目
2.下列各式:①${a^3}•{a^{-5}}=\frac{1}{a^2}$;②a3•a2=a6;③$\sqrt{{{(-5)}^2}}$=-5;④${(\frac{1}{3})^{-1}}$=3;⑤(π-3.1415)0=0,其中正确的是( )
| A. | ①④ | B. | ③④ | C. | ②③ | D. | ④⑤ |
3.下列方程组是二元一次方程组的是( )
| A. | $\left\{\begin{array}{l}{2x+3y=4}\\{2x+3=4(z+1)}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{\frac{10}{x}+3y=17}\\{8x-3y=1}\end{array}\right.$ | ||
| C. | $\left\{\begin{array}{l}{\frac{m}{2}=1}\\{2m+n=16}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{\frac{x+2y}{z}=1}\\{\frac{2x-y}{3}=1}\end{array}\right.$ |