题目内容
圆内接四边形ABCD的内角∠A:∠B:∠C=2:3:4,则∠D= 度.
将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,…,依此规律,第10个图形圆的个数为( )
A.114 B.104 C.85 D.76
把二次函数y=x2﹣12x化为形如y=a(x﹣h)2+k的形式 .
如图,⊙O为Rt△ABC的内切圆,⊙O的半径r=1,∠B=30°,
(1)劣弧DE的长.
(2)证明:AD=AE.
(3)求:劣弧DE、切线AD、AE所围成的面积S.
+(1﹣)0+(﹣)(+)
如图,AB是⊙O的弦,OC是⊙O的半径,OC⊥AB于点D,若AB=8,OD=3,则⊙O的半径等于( )
A.4 B.5 C.8 D.10
甲、乙两车分别从A、B两地同时出发相向而行,并以各自的速度匀速行驶,甲车与乙车相遇后休息半小时,再按原速度继续前进到达B地;乙车从B地直接到达A地;两车到达各自目的地后即停止.如图是甲、乙两车和B地的距离y(千米)与甲车出发时间x(小时)的函数图象.
(1)甲车的速度是 ,m= ;
(2)请分别写出两车在相遇前到B地的距离y(千米)与甲车出发时间x(小时)的函数关系式;
(3)当乙车行驶多少时间时,甲乙两车的距离是280千米.
如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3= 度.
如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0).
(1)求此抛物线的解析式;
(2)求此抛物线顶点坐标及对称轴;
(3)若抛物线上有一点B,且S△OAB=1,求点B的坐标.