题目内容
如图,⊙O为Rt△ABC的内切圆,⊙O的半径r=1,∠B=30°,
(1)劣弧DE的长.
(2)证明:AD=AE.
(3)求:劣弧DE、切线AD、AE所围成的面积S.
某旅行社有100张床位,每张床位收费10元,床位可全部租出,若每张床位的收费提高2元,则减少10张床位的租出,以每次提高2元的这种方式变化下去,为了获得1120元的收入,每张床位的收费每晚应提高多少元?
一次函数y=(k﹣3)x+2,若y随x的增大而增大,则k的值可以是( )
A.1 B.2 C.3 D.4
如图,三角尺与其灯光照射下的中心投影组成了位似图形,它们的相似比为2:3,若三角尺的一边长为8cm,则这条边在投影中的对应边长为( )
A.8cm B.12cm C.16cm D.24cm
关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值范围是( )
A.m≤3 B.m<3 C.m<3且m≠2 D.m≤3且m≠2
如图,以O为圆心的两个同心圆中,大圆的弦AB与小圆相切于点C,若大圆半径为10cm,小圆半径为6cm,求弦AB的长.
圆内接四边形ABCD的内角∠A:∠B:∠C=2:3:4,则∠D= 度.
某校政教处倡导“光盘行动”,让同学们珍惜粮食,但发现还是有少数同学们就餐时剩余饭菜较多,为了让同学们理解这次活动的重要性,政教处在某天午餐中,分别按照七、八、九三个年级总人数的同样比例随机调查了三个年级部分同学这餐饭菜的剩余情况,分为三类:A(没有剩余)、B(有少量剩余)、C(剩余一半及以上)并将结果统计后绘制成了如图所示的不完整的统计图.
(1)这次被调查的同学共有 名;
(2)八年级被调查的学生共有 名;
(3)通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供8人用一餐.据此估算,该校1000名学生这餐饭菜没有浪费的学生有多少人?这餐浪费的食物可供多少人食用一餐?
已知实数m,n满足m﹣n2=2,则代数式m2+2n2+4m﹣3的最小值等于( )
A.9 B.6 C.﹣8 D.﹣16