题目内容


如图,在△ABC中,AB=AC,∠A=30°,以B为圆心,BC的长为半径圆弧,交AC于点D,连接BD,则∠ABD=(     )

A.30°   B.45°    C.60°   D.90°


B【考点】等腰三角形的性质.

【专题】计算题.

【分析】根据等腰三角形两底角相等求出∠ABC=∠ACB,再求出∠CBD,然后根据∠ABD=∠ABC﹣∠CBD计算即可得解.

【解答】解:∵AB=AC,∠A=30°,

∴∠ABC=∠ACB=(180°﹣∠A)=(180°﹣30°)=75°,

∵以B为圆心,BC的长为半径圆弧,交AC于点D,

∴BC=BD,

∴∠CBD=180°﹣2∠ACB=180°﹣2×75°=30°,

∴∠ABD=∠ABC﹣∠CBD=75°﹣30°=45°.

故选:B.

【点评】本题考查了等腰三角形的性质,主要利用了等腰三角形两底角相等,熟记性质是解题的关键.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网