题目内容
1.分析 过P作AB的垂线,交AB、DE分别为H、K,连接BD,由正六边形的性质可求出BD的长,而点P到AF与CD的距离之和,P到EF、BC的距离之和均为BD的长,据此得出结论.
解答
解:过P作AB的垂线,分别交AB、DE于H、K,连接BD,作CG⊥BD于G
∵六边形ABCDEF是正六边形
∴AB∥DE,AF∥CD,BC∥EF,且P到AF与CD的距离之和,及P到EF、BC的距离之和均为HK的长,
∵BC=CD,∠BCD=∠ABC=∠CDE=120°,
∴∠CBD=∠BDC=30°,
∴BD∥HK,且BD=HK,
∵CG⊥BD,
∴BD=2BG=2×BC×cos∠CBD=2×2$\sqrt{3}$×$\frac{\sqrt{3}}{2}$=6,
∴点P到各边距离之和=3BD=3×6=18.
点评 本题主要考查的是正多边形及锐角三角函数的定义、特殊角的三角函数值,根据题意画出图形,利用数形结合思想求解是解答此题的关键.
练习册系列答案
相关题目
9.下列各项中:①以不记名方式填写问卷调查表;②使用统计表的方式;③用统计图的方式,其中可以表示调查结果的有( )
| A. | 0种 | B. | 1种 | C. | 2种 | D. | 3种 |
10.点A(-2,-3)所在象限是( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |