题目内容


已知抛物线经过A(﹣2,0),B(0,2),C(,0)三点,一动点P从原点出发以1个单位/秒的速度沿x轴正方向运动,连接BP,过点A作直线BP的垂线交y轴于点Q.设点P的运动时间为t秒.

(1)求抛物线的解析式;

(2)当BQ=AP时,求t的值;

(3)随着点P的运动,抛物线上是否存在一点M,使△MPQ为等边三角形?若存在,请直接写t的值及相应点M的坐标;若不存在,请说明理由.


解:(1)设抛物线的解析式为y=ax2+bx+c,

∵抛物线经过A(﹣2,0),B(0,2),C(,0)三点,

解得

∴y=﹣x2﹣x+2.

(2)∵AQ⊥PB,BO⊥AP,

∴∠AOQ=∠BOP=90°,∠PAQ=∠PBO,

∵AO=BO=2,

∴△AOQ≌△BOP,

∴OQ=OP=t.

①如图1,当t≤2时,点Q在点B下方,此时BQ=2﹣t,AP=2+t.

∵BQ=AP,

∴2﹣t=(2+t),

∴t=.

②如图2,当t>2时,点Q在点B上方,此时BQ=t﹣2,AP=2+t.

∵BQ=AP,

∴t﹣2=(2+t),

∴t=6.

综上所述,t=或6时,BQ=AP.

(3)当t=﹣1时,抛物线上存在点M(1,1);当t=3+3时,抛物线上存在点M(﹣3,﹣3).

分析如下:

∵AQ⊥BP,

∴∠QAO+∠BPO=90°,

∵∠QAO+∠AQO=90°,

∴∠AQO=∠BPO.

在△AOQ和△BOP中,

∴△AOQ≌△BOP,

∴OP=OQ,

∴△OPQ为等腰直角三角形,

∵△MPQ为等边三角形,则M点必在PQ的垂直平分线上,

∵直线y=x垂直平分PQ,

∴M在y=x上,设M(x,y),

解得  或

∴M点可能为(1,1)或(﹣3,﹣3).

①如图3,当M的坐标为(1,1)时,作MD⊥x轴于D,

则有PD=|1﹣t|,MP2=1+|1﹣t|2=t2﹣2t+2,PQ2=2t2

∵△MPQ为等边三角形,

∴MP=PQ,

∴t2+2t﹣2=0,

∴t=﹣1+,t=﹣1﹣(负值舍去).

②如图4,当M的坐标为(﹣3,﹣3)时,作ME⊥x轴于E,

则有PE=3+t,ME=3,

∴MP2=32+(3+t)2=t2+6t+18,PQ2=2t2

∵△MPQ为等边三角形,

∴MP=PQ,

∴t2﹣6t﹣18=0,

∴t=3+3,t=3﹣3(负值舍去).

综上所述,当t=﹣1+时,抛物线上存在点M(1,1),或当t=3+3时,抛物线上存在点M(﹣3,﹣3),使得△MPQ为等边三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网