ÌâÄ¿ÄÚÈÝ
14£®Èçͼ1£¬Æ½ÃæÖ±½Ç×ø±êϵÖУ¬Å×ÎïÏßy=ax2+bx+4¾¹ýµãD£¨2£¬4£©£¬ÇÒÓëxÖá½»ÓÚA£¨3£¬0£©£¬BÁ½µã£¬ÓëyÖá½»ÓÚµãC£¬Á¬½ÓAC£¬CD£¬BC£®£¨1£©¸ÃÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©Èçͼ2£¬µãPÊÇËùÇóÅ×ÎïÏßÉϵÄÒ»¸ö¶¯µã£¬¹ýµãP×÷xÖáµÄ´¹Ïßl£¬l·Ö±ð½»xÖáÓÚµãE£¬½»Ö±ÏßACÓÚµãM£¬ÉèµãPµÄºá×ø±êΪm£¬µ±0£¼m¡Ü2ʱ£¬¹ýµãM×÷MG¡ÎBC£¬MG½»xÖáÓÚµãG£¬Á¬½ÓGC£¬ÔòmΪºÎֵʱ£¬¡÷GMCµÄÃæ»ýÈ¡µÃ×î´óÖµ£¬²¢Çó³öÕâ¸ö×î´ó£®
£¨3£©Èçͼ3£¬Rt¡÷A1B1C1ÖУ¬¡ÏA1C1B1=90¡ã£¬A1C1=1£¬B1C1=2£¬Ö±½Ç±ßA1C1ÔÚxÖáÉÏ£¬ÇÒA1ÓëAÖØºÏ£¬µ±Rt¡÷A1B1C1ÑØxÖá´ÓÓÒÏò×óÒÔÿÃë1¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÒÆ¶¯Ê±£¬Éè¡÷A1B1C1Óë¡÷ABCÖØµþ²¿·ÖµÄÃæ»ýΪS£¬Çóµ±S=$\frac{4}{5}$ʱ£¬¡÷A1B1C1ÒÆ¶¯µÄʱ¼ät£®
·ÖÎö £¨1£©°ÑD£¨2£¬4£©£¬A£¨3£¬0£©´úÈëy=ax2+bx+4½â·½³Ì×é¼´¿É£®
£¨2£©ÓÉGM¡ÎBC£¬OC¡ÎEM£¬ÍƳö$\frac{AG}{AB}$=$\frac{AM}{AC}$=$\frac{AE}{AO}$£¬µÃAG=$\frac{4}{3}$£¨3-m£©£¬GB=$\frac{4}{3}$m£¬ÓÉS¡÷MGC=S¡÷BMG¹¹½¨¶þ´Îº¯Êý¼´¿É½â¾öÎÊÌ⣮
£¨3£©·ÖÁ½ÖÖÇéÐ΢ÙÈçͼ3ÖУ¬Öصþ²¿·ÖÊÇËıßÐÎEFB1C1£¬Áгö·½³Ì¼´¿É½â¾öÎÊÌ⣮¢ÚÈçͼ4ÖУ¬µ±Öصþ²¿·ÖÊÇËıßÐÎEBB1C1ʱ£¬Áгö·½³Ì¼´¿É½â¾öÎÊÌ⣮
½â´ð ½â£º£¨1£©°ÑD£¨2£¬4£©£¬A£¨3£¬0£©´úÈëy=ax2+bx+4µÃ$\left\{\begin{array}{l}{4a+2b+4=4}\\{9a+3b+4=0}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{a=-\frac{4}{3}}\\{b=\frac{8}{3}}\end{array}\right.$£¬
¡àÅ×ÎïÏß½âÎöʽΪy=-$\frac{4}{3}$x2+$\frac{8}{3}$x+4£®
£¨2£©Èçͼ2ÖУ¬Á¬½ÓBM£®![]()
¡ßÖ±ÏßAC½âÎöʽΪy=-$\frac{4}{3}$x+4£¬
¡àµãM×ø±ê£¨m£¬-$\frac{4}{3}$m+4£©£¬E£¨m£¬0£©£¬
¡ßGM¡ÎBC£¬OC¡ÎEM£¬
¡à$\frac{AG}{AB}$=$\frac{AM}{AC}$=$\frac{AE}{AO}$£¬
¡àAG=$\frac{4}{3}$£¨3-m£©£¬
¡àGB=$\frac{4}{3}$m£¬
¡ßS¡÷MGC=S¡÷BMG=$\frac{1}{2}$•$\frac{4}{3}$m•£¨-$\frac{4}{3}$m+4£©=-$\frac{8}{9}$£¨m-$\frac{3}{2}$£©2+2£®
¡ßa=-$\frac{8}{9}$£¼0£¬
¡àm=$\frac{3}{2}$ʱ£¬¡÷GMCµÄÃæ»ýÈ¡µÃ×î´óÖµ£¬Õâ¸ö×î´óֵΪ2£®
£¨3£©Èçͼ3ÖУ¬Öصþ²¿·ÖÊÇËıßÐÎEFB1C1£¬![]()
¡ßÖ±ÏßA1C1µÄ½âÎöʽΪy=2£¨x+t£©-6£¬Ö±ÏßCA½âÎöʽΪy=-$\frac{4}{3}$x+4£¬
ÓÉ$\left\{\begin{array}{l}{y=2£¨x+t£©-6}\\{y=-\frac{4}{3}x+4}\end{array}\right.$µÃµ½µãE£¨-$\frac{3}{5}t$+3£¬$\frac{4}{5}$t£©£¬
¡ßF[4-t£¬-$\frac{4}{3}$£¨4-t£©+4]£¬
ÓÉÌâÒâ$\frac{1}{2}$•[4-t-£¨-$\frac{3}{5}$t+3£©]•[2-$\frac{4}{3}$£¨t-1£©]=$\frac{1}{5}$£¬
ÕûÀíµÃµ½2t2-10t+11=0£¬
¡àt=5-$\sqrt{3}$»ò5+$\sqrt{3}$£¨ÉáÆú£©£®
Èçͼ4ÖУ¬µ±Öصþ²¿·ÖÊÇËıßÐÎEBB1C1ʱ£¬![]()
¡ßÖ±ÏßBC½âÎöʽΪy=4x+4£¬
ÓÉ$\left\{\begin{array}{l}{y=4x+4}\\{y=2£¨x+t£©-6}\end{array}\right.$¿ÉµÃE£¨t-5£¬4t-16£©£¬
ÓÉÌâÒâ$\frac{1}{2}$•£¨t-4£©•£¨4t-16£©=$\frac{1}{5}$£¬
½âµÃt=4+$\frac{\sqrt{10}}{10}$»ò4-$\frac{\sqrt{10}}{10}$£¨ÉáÆú£©£¬
×ÛÉÏËùÊöt=5-$\sqrt{3}$»ò4+$\frac{\sqrt{10}}{10}$Ãëʱ£¬¡÷A1B1C1Óë¡÷ABCÖØµþ²¿·ÖµÄÃæ»ýΪ$\frac{4}{5}$£®
µãÆÀ ±¾Ì⿼²é¶þ´Îº¯Êý×ÛºÏÌâ¡¢Ò»´Îº¯Êý¡¢´ý¶¨ÏµÊý·¨¡¢Æ½ÒƱ任µÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇѧ»á¹¹½¨¶þ´Îº¯Êý£¬ÀûÓöþ´Îº¯ÊýµÄÐÔÖʽâ¾ö×îÖµÎÊÌ⣬ѧ»á·ÖÀàÌÖÂÛ£¬Ñ§»áÀûÓ÷½³Ì×éÇóÁ½¸öº¯Êý½»µã×ø±ê£¬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮
| A£® | $\sqrt{4}$ | B£® | $\sqrt{a}$£¨a¡Ý0£© | C£® | 3$\sqrt{2}$ | D£® | $\sqrt{-3}$ |
| A£® | 42 | B£® | 28 | C£® | 24 | D£® | 21 |
| A£® | y=6x+1 | B£® | y=4x+1 | C£® | y=4x+2 | D£® | y=5x+1 |