题目内容

9.如果f(x)=$\frac{1}{{\sqrt{3}-\sqrt{x}}}$,那么f(2)=$\sqrt{3}+\sqrt{2}$.

分析 将x=2代入公式,再分母有理化可得.

解答 解:当x=2时,f(2)=$\frac{1}{\sqrt{3}-\sqrt{2}}$=$\frac{\sqrt{3}+\sqrt{2}}{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})}$=$\sqrt{3}+\sqrt{2}$,
故答案为:$\sqrt{3}+\sqrt{2}$.

点评 本题主要考查函数的求值,(1)当已知函数解析式时,求函数值就是求代数式的值;(2)函数值是唯一的,而对应的自变量可以是多个.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网