题目内容
给出条件:①两条直线相交成直角;②两条直线互相垂直;③一条直线是另一直线的垂线,并且能否以上述任何一个为条件得出另外两个为内容的结论,正确的是( )
A. 能 B. 不能 C. 有的能有的不能 D. 无法确定
A 【解析】试题解析:①作为条件,②③为结论正确;②作为条件,①③为结论正确; ③作为条件,①②为结论正确. 故选A.已知|3x|﹣y=0,|x|=1,则y的值等于( )
A. 3或﹣3 B. 11 C. -3 D. 3
查看答案现有四种说法:①-a表示负数; ②若|x|=-x,则x<0; ③绝对值最小的有理数是0;④3×102x2y是5次单项式;其中正确的是( )
A. ① B. ② C. ③ D. ④
查看答案在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐上,且点A(0,2),点C(
,0),如图所示:抛物线
经过点B。
![]()
(1)求点B的坐标;
(2)求抛物线的解析式;
(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由。
查看答案操作:在△ABC中,AC=BC=2,∠C=90°,将一块等腰三角形板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点。图①,②,③是旋转三角板得到的图形中的3种情况。研究:
(1)三角板ABC绕点P旋转,观察线段PD和PE之间有什么数量关系?并结合图②加以证明。
(2)三角板ABC绕点P旋转,△PBE是否能为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由。(图④不用)
![]()
某贸易公司购进“长青”胶州大白菜,进价为每棵20元,物价部门规定其销售单价每棵不得超过80元,也不得低于30元.经调查发现:日均销售量y(棵)与销售单价x(元/棵)满足一次函数关系,并且每棵售价60元时,日均销售90棵;每棵售价30元时,日均销售120棵.
(1)求日均销售量y与销售单价x的函数关系式;
(2)在销售过程中,每天还要支出其他费用200元,求销售利润w(元)与销售单价x之间的函数关系式;并求当销售单价为何值时,可获得最大的销售利润?最大销售利润是多少?
查看答案 试题属性- 题型:单选题
- 难度:中等
直线y=kx+4经过点(1,2),求不等式kx+4≥0的解集.
x≤2 【解析】试题分析:把点(1,2)的坐标代入直线解析式求出k值,从而得到直线解析式y=-2x+4,然后解不等式-2x+4≥0即可. 试题解析:把点(1,2)的坐标代入直线解析式y=kx+4中, 得k+4=2, 解得:k=﹣2, 则直线的函数解析式为:y=﹣2x+4, 由﹣2x+4≥0,得:x≤2.某校开展“节约每一滴水”活动,为了了解开展活动的一个月以来节约用水的病况,从八年级的400名同学中选出20名同学统计了解各自家庭一个月的节水情况,见下表:
节水(m3) | 0.2 | 0.25 | 0.3 | 0.4 | 0.5 |
家庭数(个) | 2 | 4 | 6 | 7 | 1 |
分别求出这20个家庭节水的中位数和众数.请你估计这400名同学的家庭一个月节约用水的总量大约是多少m3?
查看答案如图,△ABC和△ABD中,∠C=∠D=Rt∠,E是BC边上的中线.请你说明CE=DE的理由.
![]()
如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.
![]()
如果关于x的不等式k﹣x+6>0的正整数解为1、2、3,那么k的取值范围是多少?
查看答案解不等式组:
,并把解集在数轴上表示出来.
![]()
- 题型:解答题
- 难度:中等
已知a≠0,在同一直角坐标系中,函数y=ax与y=ax2的图象有可能是( )
A.
B.
C.
D. ![]()
如图,圆O是△ABC的外接圆,∠A=68°,则∠BOC的大小是( )
![]()
A. 22° B. 32° C. 136° D. 68°
查看答案用配方法解方程x2+6x+4=0,下列变形正确的是( )
A. (x+3)2=﹣4 B. (x﹣3)2=4 C. (x+3)2=5 D. (x+3)2=±![]()
下列事件中,属于必然事件的是( )
A.二次函数的图象是抛物线
B.任意一个一元二次方程都有实数根
C.三角形的外心在三角形的外部
D.投掷一枚均匀的硬币100次,正面朝上的次数为50次
查看答案下列图形中,既是轴对称图形又是中心对称图形的是( )
A.
B.
C.
D. ![]()
下列关于x的方程中,一定是一元二次方程的是( )
A. (m﹣3)x2﹣
x﹣2 B. k2x+5k+6=0; C.
x2﹣
x﹣
=0; D. 3x2+
﹣2=0
- 题型:单选题
- 难度:中等
如果两个角互补,并且它们的差是30°,那么较大的角是________.
105° 【解析】本题考查补角的知识 设较大角为x,则其补角为180°-x,根据它们的差是30°可列出方程,解出即可. 设较大角为x,则其补角为180°-x, 由题意得:x-(180°-x)=30°, 解得:x=105°. 故较大的角为.在数轴上离开原点4个长度单位的点表示的数是 ________ 。
查看答案已知代数式2a3bn+1与﹣3am﹣2b2是同类项,则2m+3n=________.
查看答案一列单项式:﹣x2 , 3x3 , ﹣5x4 , 7x5 , …,按此规律排列,则第7个单项式为________
查看答案若|m﹣3|+(n+2)2=0,则m+2n的值为 .
查看答案如图,AC⊥BC于点C,CD⊥AB于点D,其中长度能表示点到直线(或线段)的距离的线段有( )
![]()
A. 1条 B. 2条 C. 3条 D. 5条
查看答案 试题属性- 题型:填空题
- 难度:简单
把方程
去分母正确的是( )
A. 18x+2(2x-1)=18-3(x+1) B. 3x+(2x-1)=3-(x+1)
C. 18x+(2x-1)=18-(x+1) D. 3x+2(2x-1)=3-3(x+1)
A 【解析】同时乘以个分母的最小公倍数,去除分母可得出答案. 【解析】 去分母的:18x+2(2x-1)=18-3(x+1). 故选A.一个长为19cm,宽为18cm的长方形,如果把这个长方形分成若干个正方形要求正方形的边长为正整数,那么该长方形最少可分成正方形的个数( )
A. 5个 B. 6个 C. 7个 D. 8个
查看答案下列四种运算中,结果最大的是( )
A. 1+(﹣2) B. 1﹣(﹣2) C. 1×(﹣2) D. 1÷(﹣2)
查看答案(2016四川省南充市)如果向右走5步记为+5,那么向左走3步记为( )
A. +3 B. ﹣3 C.
D. ![]()
若(a+1)2+|b﹣2|=0,化简a(x2y+xy2)﹣b(x2y﹣xy2)的结果为( )
A.3x2y B.﹣3x2y+xy2 C.﹣3x2y+3xy2 D.3x2y﹣xy2
查看答案给出条件:①两条直线相交成直角;②两条直线互相垂直;③一条直线是另一直线的垂线,并且能否以上述任何一个为条件得出另外两个为内容的结论,正确的是( )
A. 能 B. 不能 C. 有的能有的不能 D. 无法确定
查看答案 试题属性- 题型:单选题
- 难度:简单
某贸易公司购进“长青”胶州大白菜,进价为每棵20元,物价部门规定其销售单价每棵不得超过80元,也不得低于30元.经调查发现:日均销售量y(棵)与销售单价x(元/棵)满足一次函数关系,并且每棵售价60元时,日均销售90棵;每棵售价30元时,日均销售120棵.
(1)求日均销售量y与销售单价x的函数关系式;
(2)在销售过程中,每天还要支出其他费用200元,求销售利润w(元)与销售单价x之间的函数关系式;并求当销售单价为何值时,可获得最大的销售利润?最大销售利润是多少?
(1)y=﹣x+150,(30≤x≤80);(2) 当x=80时取得最大值,为W最大值=﹣(80﹣85)2+4025=4000元. 【解析】试题分析:(1)设一次函数解析式为y=kx+b,把(60,90),(30,120)分别代入上式得到一次函数解析式; (2)根据题意得到W=(x﹣20)(﹣x+150)﹣200,配方后求最大值. 试题解析:(1)设一次函数解析式为设一次函数解析...某公司草坪的护栏是由50段形状相同的抛物线组成的,为牢固起见,每段护栏需按间距0.4m加设不锈钢管(如图)做成立柱,为了计算所需不锈钢管立柱的总长度,设计人员测得如图所示的数据.
(1)求此抛物线的解析式;
(2)计算所需不锈钢管的总长度.
![]()
某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?
查看答案如图,正方形ABCD与正方形A1B1C1D1关于某点中心对称,已知A, D1,D三点的坐标分别是(0,4),(0,3),(0,2).
![]()
(1)对称中心的坐标;
(2)写出顶点B, C, B1 , C1的坐标.
查看答案实践与操作:一般地,如果把一个图形绕着一个定点旋转一定角度α(α小于360°)后,能够与原来的图形重合,那么这个图形叫做旋转对称图形,这个定点叫做旋转对称中心,α叫做这个旋转对称图形的一个旋转角,请根据上述规定解答下列问题:
(1)请写出一个有一个旋转角是90°旋转对称图形,这个图形可以是_____;
(2)尺规作图:在图中的等边三角形内部作出一个图形,使作出的图形和这个等边三角形构成的整体既是一个旋转对称图形又是一个轴对称图形(作出的图形用实线,作图过程用虚线,保留痕迹,不写做法).
![]()
解一元二次方程
(1)x2﹣2x﹣1=0
(2)(2x﹣3)2=(x+2)2.
查看答案 试题属性- 题型:解答题
- 难度:中等
若函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,则a的值为_____.
﹣1或2或1 【解析】∵函数y=(a-1)x2-4x+2a的图象与x轴有且只有一个交点, 当函数为二次函数时,b2-4ac=16-4(a-1)×2a=0, 解得:a1=-1,a2=2, 当函数为一次函数时,a-1=0,解得:a=1. 故答案为:-1或2或1.右图是“靠右侧通道行驶”的交通标志,若将图案绕其中心顺时针旋转90°,则得到的图案是“ ”的交通标志(不画图案,只填含义).
![]()
三角形两边长分别为3和6,第三边是方程x2﹣13x+36=0的根,则三角形的周长为 .
查看答案二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣
,y2)、点C(
,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有( )
![]()
A. 2个 B. 3个 C. 4个 D. 5个
查看答案如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置,若AC⊥A′B′,则∠BAC的度数是( )
![]()
A. 50° B. 60° C. 70° D. 80°
查看答案关于x的一元二次方程x2﹣6x+2k=0有两个不相等的实数根,则实数k的取值范围是( )
A. k≤
B. k<
C. k≥
D. k>![]()
- 题型:填空题
- 难度:中等
已知
、
为常数,且三个单项式
,
,
相加得到的和仍然是单项式,那么
的值可能是多少?请你说明理由.
在数轴上表示下列个数,并用“
”连接起来.(要求以
为单位长度画数轴)
,
,
,
,
,
.
计算:(
)
.
(
)
.
(
)
.
(
)
.
已知
是关于
的恒等式,则
__________.且
__________.
若
与
都是三次多项式,
是五次多项式,有下列说法:①
可能是六次多项式;②
一定是次数不高于三次的整式;③
一定五次多项式;④
一定是五次整式;⑤
可能是常数.其中正确的是__________.
已知有理数
,
满足:
,
且
,则
__________.
- 题型:解答题
- 难度:中等
下列四组线段中,不能组成比例线段的是( )
A. ![]()
B. ![]()
C. ![]()
D. ![]()
如图,在平面直角坐标系中,已知抛物线
与x轴相交于
,C两点
与y轴相交于点B
.
a 0,
填“
”或“
”
;
若该抛物线关于直线
对称,求抛物线的函数表达式;
在
的条件下,若点M为第三象限内抛物线上一动点,点M的横坐标为
的面积为
求S关于m的函数关系式,并求出S的最大值;
在
的条件下,若点P是抛物线上的动点,点Q是直线
上的动点,判断有几个位置能够使以点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.
阅读材料:善于思考的小军在解方程组
时,采用了一种“整体代换”的解法:
【解析】
将方程
变形:
即
把方程
带入
得:
把
代入
得
方程组的解为
.
请你解决以下问题:
模仿小军的“整体代换”法解方程组
已知
满足方程组
.
求
的值;
求
的值.
在2014年6月23日第十届保护韩江母亲河徒步节上,如图所示,某同学为了测得一段南北流向的河段的宽,在河东岸点A处观测到河对岸水边有一点C,测得C在A北偏西
的方向上,沿河岸向北前行40米到达B处,测得C在B北偏西
的方向上,请你根据以上数据,求这段河段的宽度
结果保留根号
![]()
为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A,B两种型号的学习用品共1000件,已知A型学习用品的单价为20元,B型学习用品的单价为30元.
(1)若购买这批学习用品用了26000元,则购买A,B两种学习用品各多少件?
(2)若购买这批学习用品的钱不超过28000元,则最多购买B型学习用品多少件?
查看答案“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:
组别 | 成绩x分 | 频数 |
第1组 |
| 6 |
第2组 |
| 8 |
第3组 |
| 14 |
第4组 |
| a |
第5组 |
| 10 |
请结合图表完成下列各题:
求表中a的值;
频数分布直方图补充完整;
若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?
第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.
![]()
- 题型:单选题
- 难度:简单