ÌâÄ¿ÄÚÈÝ
1£®Èçͼ£¨1£©£¬¾ØÐÎABCDµÄ±ßAB=4£¬BC=8£¬½«Rt¡÷ABCÈÆµãBÄæÊ±ÕëÐýת90¡ãµÃµ½Rt¡÷GEF£¬µãEÓëBÖØºÏ£¬½«¡÷GEF´ÓBÒÔÿÃë1¸öµ¥Î»µÄËÙ¶ÈÏòÉäÏßBC·½ÏòÔÈËÙÒÆ¶¯£¬µ±µãGÓëµãCÖØºÏʱֹͣÔ˶¯£¬ÉèÔ˶¯Ê±¼äΪtÃ룬½â´ðÏÂÁÐÎÊÌ⣺£¨1£©ÔÚÔ˶¯¹ý³ÌÖУ¬µ±tΪºÎֵʱ£¬GF¹ýµãA£»
£¨2£©ÔÚÕû¸öÔ˶¯¹ý³ÌÖУ¬Éè¡÷GEFÓë¡÷ACDÖØµþ²¿·ÖµÄÃæ»ýΪS£¬ÇóSÓëtµÄº¯Êý¹ØÏµÊ½£¬²¢Ð´³öÏàÓ¦µÄtµÄȡֵ·¶Î§£»
£¨3£©Èçͼ£¨2£©ÔÚÔ˶¯¹ý³ÌÖе±0¡Üt¡Ü8ʱ£¬Á¬½ÓBD½»ACÓëO£¬ÉèEFÓëÏß¶ÎBD½»ÓÚµãP£¬ÊÇ·ñ´æÔÚ¡÷PEOΪµÈÑüÈý½ÇÐΣ¿Èô´æÔÚ£¬Çó³öÏàÓ¦µÄt£¬Èô²»´æÔÚ˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©Èçͼ1£¬ÓÉÐýתºÍÆ½ÒÆµÄÐÔÖÊ¿ÉÖªBF=BC=E¡äF¡ä£¬Ò×µÃF¡äM=ME¡ä=4£¬¿ÉµÃAMΪ¡÷G¡äE¡äF¡äµÄÖÐλÏߣ¬ÓÉÖÐλÏßµÄÐÔÖʿɵÃAMµÄ³¤£¬Ò×µÃt£»
£¨2£©ÀûÓ÷ÖÀàÌÖÂÛµÄ˼Ï룬¢Ùµ±0¡Üt¡Ü2ʱ£¬Èçͼ1£¬AM=t£¬MP=$\frac{1}{2}t$£¬¿ÉµÃS=$\frac{1}{4}$t2£»
¢ÚÈçͼ2£¬µ±2£¼t¡Ü8ʱ£¬AN=t-2£¬NQ=$\frac{\sqrt{5}}{5}$£¨t-2£©£¬ÀûÓÃÏàËÆÈý½ÇÐεÄÐÔÖʿɵÃAN=t-2£¬NQ=$\frac{\sqrt{5}}{5}$£¨t-2£©£¬ÓÉS=S¡÷MPA-S¡÷AQN ¿ÉµÃ½á¹û£»
¢Ûµ±8£¼t¡Ü10ʱ£¬ÀûÓÃS=S¡÷ADC-S¡÷ANQ£¬Çó³ö´ð°¸£»
¢Üµ±10£¼t¡Ü12ʱ£¬¿ÉµÃ£ºCG=12-t£¬CM=24-2t£¬QC=$\frac{\sqrt{5}}{5}$£¨24-2t£©£¬QM=$\frac{2\sqrt{5}}{5}$£¨24-2t£©£¬ÔÙÀûÓÃS=$\frac{1}{2}$QM•QCÇó³ö´ð°¸£»
£¨3£©Ê×Ïȱíʾ³öPE2=£¨$\frac{1}{2}$t£©2£¬QE2=22+£¨4-t£©2£¬OP2=${£¨2\sqrt{5}-\frac{\sqrt{5}}{2}t£©}^{2}$£¬ÔÙ·Ö±ðÀûÓâٵ±PO=PEʱ£¬¢Úµ±EO=EPʱ£¬¢Ûµ±OE=OPʱ£¬Çó³ö´ð°¸£®
½â´ð ½â£º£¨1£©¡ßF¡äM=ME¡ä=4£¬
¡àt=AM=$\frac{1}{2}G¡äE¡ä=2$£¬
¼´µ±t=2ʱ£¬GF¹ýµã£»![]()
£¨2£©¢ÙÈçͼ1£¬µ±0¡Üt¡Ü2ʱ£¬AM=t£¬MP=$\frac{1}{2}t$£¬S=$\frac{1}{4}$t2£¬
¢ÚÈçͼ2£¬µ±2£¼t¡Ü8ʱ£¬AN=t-2£¬
¡ß¡÷ANQ¡×¡÷ACD£¬
¡à$\frac{NQ}{AN}$=$\frac{CD}{AC}$£¬
¡à$\frac{NQ}{t-2}$=$\frac{4}{4\sqrt{5}}$£¬
¡àNQ=$\frac{\sqrt{5}}{5}$£¨t-2£©£¬![]()
AQ=$\frac{2\sqrt{5}}{5}£¨t-2£©$£¬
¡àS=S¡÷MPA-S¡÷AQN=$\frac{1}{4}$t2-$\frac{1}{2}$¡Á$\frac{2\sqrt{5}}{5}$¡Á$\frac{\sqrt{5}}{5}$£¨t-2£©2
=$\frac{1}{4}$t2-$\frac{1}{5}$£¨t-2£©2
=$\frac{1}{20}$t2+$\frac{4}{5}$t$-\frac{4}{5}$£»
¢ÛÈçͼ3£¬µ±8£¼t¡Ü10ʱ£¬
S=S¡÷ADC-S¡÷ANQ
=16-$\frac{1}{5}$£¨t-2£©2![]()
=-$\frac{1}{5}$t2+$\frac{4}{5}$t-$\frac{4}{5}$+16
=$-\frac{1}{5}$t2+$\frac{4}{5}t$$+\frac{76}{5}$£»
¢Üµ±10£¼t¡Ü12ʱ£¬
¿ÉµÃ£ºCG=12-t£¬CM=24-2t£¬QC=$\frac{\sqrt{5}}{5}$£¨24-2t£©
QM=$\frac{2\sqrt{5}}{5}$£¨24-2t£©
¡àS=$\frac{1}{2}$QM•QC
=$\frac{1}{2}¡Á\frac{2\sqrt{5}}{5}$¡Á$\frac{\sqrt{5}}{5}$£¨24-2t£©2
=$\frac{1}{5}$£¨24-2t£©2![]()
=-$\frac{4}{5}$t2-$\frac{96}{5}$t+$\frac{576}{5}$£¬
×ÛÉÏ£¬ÓÐS=$\left\{\begin{array}{l}{\frac{1}{4}{t}^{2}£¨0¡Üt¡Ü2£©}\\{\frac{1}{20}{t}^{2}+\frac{4}{5}t-\frac{4}{5}£¨2£¼t¡Ü8£©}\\{-\frac{1}{5}{t}^{2}+\frac{4}{5}t+\frac{76}{5}£¨8£¼t¡Ü10£©}\\{\frac{4}{5}{t}^{2}-\frac{96}{5}t+\frac{576}{5}£¨10£¼t¡Ü12£©}\end{array}\right.$£»
£¨3£©Èçͼ5£¬PE2=£¨$\frac{1}{2}$t£©2=$\frac{1}{4}$t2£¬OE2=22+£¨4-t£©2=4+16-8t+t2£¬
OP2=${£¨2\sqrt{5}-\frac{\sqrt{5}}{2}t£©}^{2}$=20-10t+$\frac{5}{4}$t2£¬![]()
¢Ùµ±PO=PEʱ£¬
$\frac{1}{4}{t}^{2}$=20-10t+$\frac{5}{4}$t2
½âµÃ£ºt=5$¡À\sqrt{5}$£»
¢Úµ±EO=EPʱ£¬
t2-8t+20=$\frac{1}{4}$t2£¬
½âµÃ£ºt1=4£¬t2=$\frac{20}{3}$£»
¢Ûµ±OE=OPʱ£¬
t2-8t+20=20-10t+$\frac{5}{4}$t2£¬
½âµÃ£ºt3=0£¬t4=8£»
µ±t=0ʱ£¬P£¬EÖØºÏ µ±t=4ʱ£¬O£¬PÖØºÏ£¬
×ÛÉÏËùÊö£ºtµÄֵΪ5+$\sqrt{5}$£¬5-$\sqrt{5}$£¬$\frac{20}{3}$£¬8£®
µãÆÀ ´ËÌâÖ÷Òª¿¼²éÁËËıßÐÎ×ÛºÏÒÔ¼°¹´¹É¶¨ÀíºÍÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ¡¢µÈÑüÈý½ÇÐεÄÐÔÖʵÈ֪ʶ£¬ÕýÈ·ÀûÓ÷ÖÀàÌÖÂ۵óötµÄÖµÒÔ¼°½áºÏ·Ö¶Îº¯ÊýÇó³öº¯Êý¹ØÏµÊ½ÊǽâÌâ¹Ø¼ü£®
| A£® | B£® | C£® | D£® |
| A£® | -3ab2 | B£® | -3ab | C£® | 3ab | D£® | 3ab2 |
| A£® | 1 | B£® | 2 | C£® | 3 | D£® | 4 |