题目内容
【题目】如图,已知∠MON=90,A是∠MON内部的一点,过点A作AB⊥ON,垂点为点B,AB=3厘米,OB=4厘米,动点E、F同时从O点出发,点E以1.5厘米/秒的速度沿ON方向运动,点F以2厘米/秒的速度沿OM方向运动,EF与OA交于点C,连接AE,当点E到达点B时,点F随之停止运动。设运动时间为t秒(t>0)。
(1)当t=1秒时,ΔEOF与ΔABO是否相似?请说明理由。
(2)在运动过程中,不论t取何值时,总有EF⊥OA,为什么?
(3)连接AF,在运动过程中,是否存在某一时刻t,使得SΔAEF=
S四边形ABOF ?若存在,请求出此时t的值;若不存在,请说明理由。
![]()
【答案】(1)△EOF∽△ABO(2)EF⊥OA(3)t1=
或t2=![]()
【解析】试题分析:(1)由
=
及∠MON=∠ABE=90°,可得出△EOF∽△ABO.
(2)证明Rt△EOF∽Rt△ABO,进而证明EF⊥OA.
(3)由已知S△AEF=
S四边形ABOF.得出S△FOE+S△ABE=
S梯形ABOF,从而可求出t的值.
试题解析:(1)∵t=1,
∴OE=1.5厘米,OF=2厘米,
∵AB=3厘米,OB=4厘米,
∴
,![]()
∵∠MON=∠ABE=90°,
∴△EOF∽△ABO.
(2)在运动过程中,OE=1.5t,OF=2t.
∵AB=3,OB=4.
∴
.
又∵∠EOF=∠ABO=90°,
∴Rt△EOF∽Rt△ABO.
∴∠AOB=∠EOF.
∵∠AOB+∠FOC=90°,
∴∠EOF+∠FOC=90°,
∴EF⊥OA.
(3)如图,连接AF,
![]()
∵OE=1.5t,OF=2t,
∴BE=4﹣1.5t
∴S△FOE=
OEOF=
×1.5t×2t=
t2,S△ABE=
×(4﹣1.5t)×3=6﹣
t,
S梯形ABOF=
(2t+3)×4=4t+6
∵S△AEF=
S四边形ABOF
∴S△FOE+S△ABE=
S梯形ABOF,
∴
t2+6﹣
t=
(4t+6),即6t2﹣17t+12=0,
解得t=
或t=
.
∴当t=
或t=
时,S△AEF=
S四边形ABOF.