题目内容

如图,AB⊥BC,射线CM⊥BC,且BC=4,AB=1,点P是线段BC (不与点B、C重合)上的动点,过点P作DP⊥AP交射线CM于点D,连结AD.
(1)如图1,若BP=3,求△ABP的周长.
(2)如图2,若DP平分∠ADC,试猜测PB和PC的数量关系,并说明理由.
(3)若△PDC是等腰三角形,作点B关于AP的对称点B′,连结B′D,则B′D=
13
13
.(请直接写出答案)
分析:(1)根据勾股定理直接求出AP的值就可以求出结论;
(2)延长线段AP、DC交于点E,就可以得出△DPA≌△DPE,就有AP=PE,在证明△APB≌△EPC就可以得出结论;
(3)连接AB′,PB′,作B′E⊥CD于E,就可以得出PB′=CE=1,DE=2,在Rt△B′DE中由勾股定理就可以求出结论.
解答:解:(1)∵AB⊥BC∴∠ABP=90°,
∴AP2=AB2+BP2
AP=
AB2+BP2
=
12+32
=
10

∴AP+AB+BP=
10
+1+3=
10
+4

∴△APB的周长为
10
+4


(2)PB=PC,
理由如下:
延长线段AP、DC交于点E
∵DP平分∠ADC,
∴∠ADP=∠EDP.
∵DP⊥AP,
∴∠DPA=∠DPE=Rt∠.
在△DPA和△DPE中,
∠ADP=∠EDP
DP=DP
∠DPA=∠DPE

∴△DPA≌△DPE(ASA),
∴PA=PE.       
∵AB⊥BP,CM⊥CP,
∴∠ABP=∠ECP=Rt∠.
在△APB和△EPC中,
∠ABP=∠ECP
∠APB=∠EPC
PA=PE 

∴△APB≌△EPC(AAS),
∴PB=PC;                          

(3)∵△PDC是等腰三角形,∠C=90°,
∴PC=CD,∠DPC=∠PDC=45°.
∵DP⊥AP,
∴∠APD=90°,
∵∠APB+∠DPC=90°.
∴∠APB=45°°
∵AB⊥BC,
∴∠B=90°,
∴∠BAP+∠APB=90°,
∴∠BAP=45°,
∴∠BAP=∠BPA,
∴AB=PB=1.
∴PC=3
∵点B与点B′关于AP 对称,
∴△ABP≌AB′P,
∴BP=PB′=1.AB=AB′.
∵∠B=90°,
∴四边形ABPB′是正方形,
∴∠BPB′=90°,
∴∠B′PC=90°,
∵B′E⊥CD,
∴∠B′EC=90°.
∴四边形B′PCE是矩形,
∴PB′=CE=1,B′E=PC=3
∴DE=2,
在Rt△B′DE中,由勾股定理,得
B′D=
13

故答案为:
13
点评:本题考查了勾股定理的运用,全等三角形的判定及性质的运用,轴对称的性质的运用,等腰直角三角形的性质的运用,矩形的性质的运用,解答时正确添加辅助线,灵活运用勾股定理是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网