题目内容


小明、小芳做一个“配色”的游戏.右图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘转出了红色,转盘转出了蓝色,或者转盘转出了蓝色,转盘转出了红色,则红色和蓝色在一起配成紫色,这种情况下小芳获胜;同样,蓝色和黄色在一起配成绿色,这种情况下小明获胜;在其它情况下,则小明、小芳不分胜负.

(1)利用列表或树状图的方法表示此游戏所有可能出现的结果;

(2)此游戏的规则,对小明、小芳公平吗?试说明理由.

 



解:用列表法将所有可能出现的结果表示如下:

           转盘B

转盘A

(红,红)

(红,蓝)

(红,黄)

(蓝,红)

(蓝,蓝)

(蓝,黄)

(红,红)

(红,蓝)

(红,黄)

(黄,红)

(黄,蓝)

(黄,黄)

所以,所有可能出现的结果共有12种.  

(2)上面等可能出现的12种结果中,有3种情况可能得到紫色,故配成紫色的概率是,即小芳获胜的概率是;但只有2种情况才可能得到绿色,配成绿色的概率是,即小明获胜的概率是.而,故小芳获胜的可能性大,这个“配色”游戏对小明、小芳双方是不公平的. 


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网