题目内容
如图,点A1、B1、C1分别是△ABC的三边BC、AC、AB的中点,点A2、B2、C2分别是△A1B1C1的边B1C1、A1C1、A1B1的中点,依此类推,则△AnBnCn与△ABC的面积比为![]()
【答案】
![]()
【解析】
试题分析:由于A1、B1、C1分别是△ABC的边BC、CA、AB的中点,就可以得出△A1B1C1∽△ABC,且相似比为
,就可求出S△A1B1C1=
,同样地方法得出S△A2B2C2=
…依此类推所以就可以求出S△AnBnCn的值.
:∵A1、B1、C1分别是△ABC的边BC、CA、AB的中点,
∴A1B1、A1C1、B1C1是△ABC的中位线,
∴△A1B1C1∽△ABC,且相似比为
,
∴S△A1B1C1:S△ABC=1:4,且S△ABC=1
∴S△A1B1C1=
,
∵A2、B2、C2分别是△A1B1C1的边B1C1、C1A1、A1B1的中点,
∴△A1B1C1的∽△A2B2C2且相似比为
,
∴S△A2B2C2=
,
∴S△A3B3C3=
,
![]()
考点:三角形中位线定理的运用,相似三角形的判定与性质的运用
点评:解题的关键是有相似三角形的性质:面积比等于相似比的平方得到一般性规律.
练习册系列答案
相关题目