题目内容
20.分析 作PM⊥x轴于M,QN⊥x轴于N,由旋转的性质得:∠POQ=90°,OQ=OP,由AAS证明△ONQ≌△PMO,得出ON=PM,QN=OM,由点P的坐标为(4,3),得出ON=PM=3,QN=OM=4,即可得出点Q的坐标.
解答 解:作PM⊥x轴于M,QN⊥x轴于N,如图所示:![]()
则∠PMO=∠ONQ=90°,
∴∠P+∠POM=90°,
由旋转的性质得:∠POQ=90°,OQ=OP,
∴∠QON+∠POM=90°,
∴∠QON=∠P,
在△ONQ和△PMO中,$\left\{\begin{array}{l}{∠ONQ=∠PMO}&{\;}\\{∠QON=∠P}&{\;}\\{OQ=PO}&{\;}\end{array}\right.$,
∴△ONQ≌△PMO(AAS),
∴ON=PM,QN=OM,
∵点P的坐标为(4,3),
∴ON=PM=3,QN=OM=4,
∴点Q的坐标为(-3,4).
点评 本题考查了坐标与图形性质、全等三角形的判定与性质;熟练掌握坐标与图形性质,证明三角形全等是解决问题的关键.
练习册系列答案
相关题目
5.高新一中新图书馆在“校园书香四溢”活动中迎来了借书高潮,上周借书记录如表:(超过100册的部分记为正,少于100册的部分记为负)
(1)上星期借书最多的一天比借书最少的一天多借出图书多少册?
(2)上星期平均每天借出多少册书?
| 星期一 | 星期二 | 星期三 | 星期四 | 星期五 |
| +18 | -6 | +15 | 0 | -12 |
(2)上星期平均每天借出多少册书?