ÌâÄ¿ÄÚÈÝ
15£®£¨1£©Ìî¿Õ£ºÎÞÂÛkֵȡºÎֵʱ£¬ËıßÐÎABCDµÄÐÎ×´Ò»¶¨ÊÇÆ½ÐÐËıßÐΣ»
£¨2£©¢Ùµ±m=2£¬µãB×ø±êΪ£¨p£¬1£©Ê±£¬ËıßÐÎABCDµÄÐÎ×´Ò»¶¨ÊǾØÐΣ»
¢ÚÌî¿Õ£º¶Ô¢ÙÖеÄmÖµ£¬ÄÜʹËıßÐÎABCDΪ¾ØÐεĵãB¹²ÓÐ2¸ö£»
£¨3£©ËıßÐÎABCDÄܲ»ÄÜÊÇÁâÐΣ¿ÈôÄÜ£¬Ö±½Óд³öBµãµÄ×ø±ê£»Èô²»ÄÜ£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö £¨1£©¸ù¾Ý¶Ô³ÆµÄÐÔÖʿɵÃËıßÐÎABCDµÄ¶Ô½ÇÏß»¥ÏàÆ½·Ö£¬ÔòÒ»¶¨ÊÇÆ½ÐÐËıßÐΣ»
£¨2£©¢Ù°ÑBµÄ×ø±ê´úÈë·´±ÈÀýº¯ÊýµÄ½âÎöʽ¼´¿ÉÇóµÃpµÄÖµ£¬ÀûÓôý¶¨ÏµÊý·¨ÇóµÃkµÄÖµ£¬ÀûÓù´¹É¶¨ÀíÇóµÃOBµÄÖµ£¬´Ó¶øµÃ³öOA=OB=OC£¬µÃ³ö¡ÏABC=90¡ã£»
¢Ú¸ù¾Ý·´±ÈÀýº¯ÊýͼÏóµÄ¶Ô³ÆÐÔ£¬ÔÚ·´±ÈÀýº¯ÊýͼÏóÉÏ£¬Á¬Ïß¾¹ýO£¬ÇÒÁ¬ÏßµÈÓÚACµÄÒ»¶¨ÓÐÁ½×飬¾Ý´Ë¼´¿ÉÅжϣ»
£¨3£©¸ù¾ÝËıßÐÎABCDµÄ¶Ô½ÇÏßÒ»¶¨²»ÄÜ´¹Ö±¼´¿ÉÅжϣ®
½â´ð ½â£º£¨1£©¸ù¾Ý¶Ô³ÆÐԿɵãºOB=OD£¬
¡ßA£¨-m£¬0£©£¬C£¨m£¬0£©£¬
¡àOA=OC
¡àËıßÐÎABCDÊÇÆ½ÐÐËıßÐΣ®
¹Ê´ð°¸ÊÇ£ºÆ½ÐÐËıßÐΣ»
£¨2£©¢Ù¡ßµãB£¨p£¬1£©ÔÚy=$\frac{\sqrt{3}}{x}$ÉÏ£¬
¡à1=$\frac{\sqrt{3}}{p}$£¬½âµÃp=$\sqrt{3}$°ÑB£¨$\sqrt{3}$£¬1£©´úÈëy=kxµÃk=$\frac{\sqrt{3}}{3}$£¬
¡ßOB2=£¨$\sqrt{3}$£©2+12=4£¬
¡àOB=2£®
¡ßm=2£¬
¡àOA=OC=2£¬
¡àOA=OB=OC=2£¬
¡à¡ÏABC=90¡ã£¬
ÓÉ£¨1£©ÓУ¬ËıßÐÎABCDÊÇÆ½ÐÐËıßÐΣ¬
¡àƽÐÐËıßÐÎABCDÊǾØÐΣ»
¹Ê´ð°¸Îª¾ØÐΣ»
¢Ú
Óɢٵã¬m=2£¬
Èçͼ£¬×÷³öµÚÒ»¡¢ÈýÏóÏÞµÄ½ÇµÄÆ½·ÖÏߣ¬½»·´±ÈÀýº¯ÊýͼÏóÓÚµãM¡¢N£®ÔòMNµÄ½âÎöʽÊÇy=x£®
µ±x=m=2ʱ£¬·´±ÈÀýº¯ÊýÉ϶ÔÓ¦µÄµãÊÇ£¨2£¬$\frac{\sqrt{3}}{2}$£©£¬Ö±Ïßy=xÉ϶ÔÓ¦µÄµãÊÇ£¨2£¬2£©£®
¡ß2£¾$\frac{\sqrt{3}}{2}$
¡à£¨2£¬$\frac{\sqrt{3}}{2}$£©ÔÚOMµÄÑÓ³¤ÏßÉÏ£¬¼´MN£¼AC£®
ÔòÄÜʹËıßÐÎABCDÊǾØÐεĵãB¹²ÓÐ2¸ö£¬
¹Ê´ð°¸ÊÇ£º2£»
£¨3£©ËıßÐÎABCD²»ÄÜÊÇÁâÐΣ®
ÀíÓÉÊÇ£º¡ßA£¨-m£¬0£©¡¢C£¨m£¬0£©£¬
¡àËıßÐÎABCDµÄ¶Ô½ÇÏßACÔÚxÖáÉÏ£¬
ÓÖ¡ßµãB¡¢D·Ö±ðÊÇÕý±ÈÀýº¯ÊýÓë·´±ÈÀýº¯ÊýÔÚµÚÒ»¡¢ÈýÏóÏ޵Ľ»µã£¬
¡à¶Ô½ÇÏßBDºÍAC²»¿ÉÄÜ´¹Ö±£®
¡àËıßÐÎABCD²»¿ÉÄÜÊÇÁâÐΣ®
µãÆÀ ±¾Ì⿼²éÁË·´±ÈÀýº¯ÊýµÄͼÏóµÄ¶Ô³ÆÐÔÒÔ¼°ÁâÐεÄÅж¨£¬ÕýÈ·Àí½âÕý±ÈÀýº¯ÊýÓë·´±ÈÀýº¯Êý¹ØÓÚÔµã¶Ô³ÆÊǹؼü£®
| ÀîÃ÷ | 83 | 76 | 88 | 82 | 85 | 90 |
| ́Ȼ | 79 | 81 | 91 | 74 | 90 | 89 |
£¨2£©ÇëÄãÀíÓÉͳ¼ÆµÄ֪ʶ£¬ËµÃ÷ÄÄλͬѧµÄ³É¼¨±È½ÏÎȶ¨£®
| A£® | 2 | B£® | 3 | C£® | -2 | D£® | -3 |
| A£® | £¨-3£¬1£© | B£® | £¨-2£¬1£© | C£® | £¨2£¬-1£© | D£® | £¨-2£¬0.5£© |