题目内容


如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且∠D=2∠CAD.

(1)求∠D的度数;

(2)若CD=2,求BD的长.


       解:(1)∵OA=OC,

∴∠A=∠ACO,

∴∠COD=∠A+∠ACO=2∠A,

∵∠D=2∠CAD,

∴∠D=∠COD,

∵PD切⊙O于C,

∴∠OCD=90°,

∴∠D=∠COD=45°;

(2)∵∠D=∠COD,CD=2,

∴OC=OB=CD=2,

在Rt△OCD中,由勾股定理得:22+22=(2+BD)2

解得:BD=2﹣2.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网